PARTITIONING OF CO AND NI BETWEEN Fe-METAL AND OXIDE OR OLIVINE

S.E. Kesson (Research School of Earth Sciences, A.N.U., Canberra, A.C.T. 2600, Australia)

The siderophile element abundance patterns of the earth's mantle not only provide insight into the processes involved in core formation but also provide critical information concerning the question of core-mantle equilibrium. The partition behavior of Ni and Co are of particular interest in this context, since these elements appear to be uniformly distributed throughout the upper mantle and their abundances in upper mantle rocks and minerals are well established.

The partitioning of Ni and Co between oxides and Fe-metal, and between olivine and Fe-metal in both magnesian "model mantle" and Mg-free systems is currently being determined experimentally over temperatures ranging from 1000 to $\geq 1500^{\circ}$ C and pressures ranging from 0 to approximately 80 kbar.

The following equilibria have been studied: $Ni_2SiO_4 + 2Fe = Fe_2SiO_4 + 2Ni;$ $Co_2SiO_4 + 2Fe = Fe_2SiO_4 + 2Co; 5(Mg_{0.8}Ni_{0.2})_2SiO_4 + 2Fe = 5(Mg_{0.8}Fe_{0.2})_2SiO_4 + 2Ni; 5(Mg_{0.8}Co_{0.2})_2SiO_4 + 2Fe = 5(Mg_{0.8}Fe_{0.2})_2SiO_4 + 2Co; NiO + Fe = FeO + Ni; CoO + Fe = FeO + Co.$

Experimental investigations of the following proved unsatisfactory due to kinetic problems: $5(Mg_{0.8}Ni_{0.2}O) + Fe = 5(Mg_{0.8}Fe_{0.2}O) + Ni;$ $5(Mg_{0.8}Co_{0.2}O) + Fe = 5(Mg_{0.8}Fe_{0.2}O) + Co.$ Experiments were carried out in evacuated SiO₂-glass tubes and in piston-cylinder and "squeezer" high-pressure apparatus. Either Ni or Co together with Pt capsules were used. Minimal reaction was observed between the subsolidus charges and capsule materials below 1500^oC. Experimental conditions and results are summarised in Tables 1 and 2.

The K values for the reaction CoO+Fe = FeO+Co appear to decrease slightly with an increase in either temperature or pressure. A similar conclusion probably holds for the Ni-bearing system. These K values agree well with data from previous experimental studies, e.g. Schenk et al. (1968) and also with equilibrium constants derived from thermodynamic data, indicating essentially ideal behavior in metal and oxide solid solutions.

The K values for Co or Ni olivine-metal equilibria do not show a clear correlation with either temperature or pressure. The similarity between the K values for (CoFe) olivine and (CoFeMg) olivine equilibria indicate that there is only minor preferential distribution of cations in the olivine structure.

The K values for Ni-olivine equilibria are in accord with the experimental data of Irvine and Kushiro (1976) but differ significantly from K values for co-existing olivine and metal in lunar low-Ti mare basalts (Hewens and Goldstein, 1974) and in pallasites (Buseck and Goldstein, 1969). This suggests that site distribution phenomena are significant at high Ni concentration levels.

Olivine-metal and oxide-metal partition equilibria are particularly relevant to the question of core-mantle equilibrium, and will be evaluated in terms of the recent hypothesis of Ringwood (1977) that oxygen (as FeO) is an important light element in the earth's core.

Р	т ^о с	ĸl	K	K mean
		CoO+Fe ²	FeO+Co	
vacuum	1000 1100 1200 1300 1400	41 27 23 20 17	42 28 27 19 18	42 28 25 20 18
30 kbar	1200 1300 1400	17 16	19 16 13	18 16 13
75 kbar	1300	14	_	14
		NiO+Fe	FeO+Ni	
vacuum	1000 1100 1200 1300 1400	201 94 76 (98) 61	(83) 123 74 (102) 65	142 104 75 (100) 63
30 kbar	1200 1300 1400	61 78	69 61	69 61 (78)
60 kbar	1200	34	50	45

Table 1. Co and Ni partitioning between metal and oxide in simple systems

Dubious values in parentheses.

¹K is the equilibrium constant obtained using mole percent (n) values, e.g. $K = n_{FeO}^{OX} / n_{CoO}^{OX} \times n_{CO}^{m} / n_{Fe}^{m} \text{ where } ox = oxide,$ m = metal.²Starting assemblage.

178

Table 2. Co and Ni partitioning between metal and olivine						
Р	т ^о с	κ ¹	к	K mean		
		Co ₂ SiO ₄ +2Fe ²	Fe2SiO4+2Co			
30 kbar	1200 1300	11 13	19 16	15 15		
		5(Mg _{0.8} Co _{0.2}) ₂ SiO ₄ +2Fe	5(Mg _{0.8} Fe _{0.2}) ₂ SiO ₄ +2Co			
vacuum	1200 1300 1400 1500	12 11 13	13 12 11 9	13 12 11 11		
30 kbar	1200 1300 1400 1500	did not equilibrate " " " Ni2SiO4+2Fe	10 8 7 10 Fe2SiO4+2Ni	10 8 7 10		
30 kbar	1200 1300	52 46	44 42	48 44		
		5(Mg0.8Ni0.2)2SiO4+2Fe	5(Mg _{0.8} Fe _{0.2}) ₂ SiO ₄ +2Ni			
vacuum	1200 1300 1400 1500	21 23 22 16	22 33 29 27	22 28 25 22		
30 kbar	1200 1300 1400 1500	15 14 19	46 42 37 36			
$^{l}K = n_{FeO}^{ol}/n_{NiO}^{ol} \times n_{Ni}^{m}/n_{Fe}^{m}$; FeO + MgO + NiO in olivine = 100; n = mole percent; ol = olivine; m = metal.						

²Starting assemblage.

References

Buseck P. R. and Goldstein J. I., 1969. <u>Geol. Soc. Am. Bull.</u> 80, 2141. Hewens R. H. and Goldstein J. I., 1974. <u>Earth Planet. Sci. Letters</u> 24, 59. Irvine T. N. and Kushiro I., 1976. <u>Carnegie Inst. Ybk. Geophys. Lab</u>, 668. Ringwood A. E., 1977. <u>Geochem. J.</u>, in press. Schenk H., Steinmetz E. and Grundmann R., 1968. <u>Archiv für Eisenhuttenwesen</u>, <u>B</u>, 914, 895.

179