DISCRETE NODULES (MEGACRYSTS) AND LAMELLAR INTERGROWTHS IN FRANK SMITH KIMBERLITE PIPE P.H. Nixon, Dept. Of Mines & Geology, Maseru., and F.R. Boyd, Geophysical Laboratory, Carnegie Institution of Washington.

The pipe is characterised by a wide variety of deep seated nodules. There are dunites (some with large opx porphyroclasts or relict gt and cpx) garnet lherzolites (some with 50% cpx), garnet pyroxenites grading with loss of opx, into eclogites, corundum eclogites, phlogopites, and gt pyroxenites with relict dunitic patches. The gt pyroxenite suite includes types with lamellar intergrowths of gt, cpx, opx \pm chromite. The discrete nodules and megacrysts, to which this chemical study is mainly confined, include ilmenite, ilmenite-mica, ilmenite-cpx/opx (both as granular and lamellar intergrowths), garnet with inclusions of corundum or cpx, rare cpx, and opx with garnet inclusions. The mutual crystal intergrowth relationships within this group indicate consanguinity, but electron probe analyses show considerable variation (see table 1).

The discrete garnet nodules are typically, reddish-brown pyropes low in chromium (2381G, table 1; Nixon et al. 1963) with 0.8-1% TiO₂. However, a deep red nodule 2381F which is 5 cm across contains 3.36% Cr₂O₂ but nonetheless contains sufficient TiO₂ to differentiate it² from the Cr pyropes of the granular ultrabasic nodules. A pale orange nodule (2381B, table 1) with kyanite inclusions is exceptionally aluminous and contains twice the normal amount of CaO (grossularite and is equated with the grospydite suite.

A diopside inclusion in a discrete pyrope nodule has apparently equilibrated at about 1300° C or higher (Ca/(Ca+Mg) = 33.7% and this is consistent with the small but perceptible amount of Ca solid solution in associated bronzite nodules (2381D and 2373, table 1). An omphacite nodule (38% jadeite), has a rather higher Cr₂O₃ content (2382, table 1) than most eclogites/griquaites, and may also belong to the discrete nodule suite.

The ilmenite nodules are charaterised by high geikielite and haematite contents with <1% Cr203.Ilmenites are also intergrown in a granular fashion with both bronzite (a fairly common association) and more rarely, diopside. The pyroxene Ca/(Ca+Mg) ratios show more limited solid solution between enstatite and diopside than those noted above and evidently equilibrated at shallower depth (cf. Boyd and Nixon, 1973).

The <u>lamellar</u> intergrowths comprise the familiar "ilmenitediopside" "eutectic" graphic intergrowths and also nodules of alternating laminae of garnet, clinopyroxene and orthopyroxene. The ilmenites of the intergrowths and the discrete nodules show an inverse relationship between geikielite and haematite contents. Compared with Monastery Mine and northern Lesotho occurrences the Frank Smith ilmenites appear to be enriched in MgO (figure 1) although zoned reaction mantles can produce wide variations even within a single grain (Haggerty, 1973). In 2353C there are fine exsolution zones similar to magnetite (magnesioferrite) ulvöspinel phases that we have noted at Monastery Mine. The clinopyroxenes which coexist with the ilmenites also appear to be enriched in MgO compared with many nodules from elsewhere.

The <u>silicate</u> lamellar intergrowths are commonly associated with garnet pyroxenite and these appear to be mobilised phases since they are often sharply demarcated in the same hard specimen from associated (?residual) dunitic patches. The intergrowths are therefore regarded as quenched products of a garnet pyroxenite melt. An immediate ultrabasic mantle parentage is attested by the high Cr content of the pyrope and diopside, but the latter appears to have equilibrated at similar temperatures to the granular intergrowth of ilmenite and clinopyroxene (table 1).

The existence of differentiated garnet pyroxenites and heterogeneous ilmenite-pyroxene mixtures of intermediate depth (i.e. above the mantle low velocity zone of intense shearing and discrete nodule formation - Boyd and Nixon 1973) is paralleled at Matsoku. Here, the ultrabasic nodules have also suffered sulphide metasomatism and deformation, producing gneissose textures (Cox <u>et al</u>. 1973).

These "Matsoku effects" of folding and minor shearing, ilmenite enrichment, metasomatism, melting and recrystallisation, are equated with the upward migration of volatile and mobile constituents, including potassium, through the sheared asthenosphere. The mobile constituents are envisaged as being kneaded out in the manner described by Weertman (1972) and providing lubrication at the base of the African plate (lithosphere) for the dispersal of Gondwanaland.

Figure I. Compositions of ilmenites from Frank Smith and other References kimberlites.

Boyd, F. R., and Nixon, P. H., 1973 in Lesotho Kimberlites, p. 254-268, Cape Town, in press. Cox, K. G., Gurney, J. J. and Harte, B., 1973 in Lesotho Kimberlites, p. 76-100, Cape Town,

in press.

- Haggerty, S., 1973 in Lesotho Kimberlites, p. 149-158, Cape Town in press.
- Nixon, P. H., von Knorring, O and Rooke, J. M., 1963, <u>Amer</u>. <u>Mineral</u>. <u>48</u>, 1090-1132.

Weertman, J., 1972, Geol. Soc. Amer. Bull. 83, 3531-3532.

0.35 43.67 0.93 23.81 0.15 8.49 97.96 20.17 0.02 2353E 0.10 0.27 n.d. 1.1 49.41 98.40 99.23 99.92 100.55 1.75 0.72 0.15 12.66 0.10 13.94 0.24 2353C 21.54 0.04 n.å. il gt incl 0.21 0.89 54.43 56.1641.79 0.85 1.19 3.99 1.01 21.36 0.30 0.09 9.72 32.55 20.93 n.d. n.d. 2373 0.16 7.64 0.24 0.07 2.6 xdo 11.48 0.09 0.68 13.30 7.20 1.29 4.57 n.d. 36 cpx incl cpx DISCRETE NODULES 38.3 2382 ŝ 54.84 0.32 3.60 13.33 0.90 0.13 Ca/(Ca+Mg)% 33.7 18.88 58 Totals 100.04 99.74 100.00 99.37 99.37 4.79 n.d. å 2381D 41.46 0.72 21.59 4.22 20.85 1.85 0.26 6.33 0.09 n.d. 8t 42.27 19.64 0.94 3.36 7.26 0.29 5.16 21.05 0.03 2381F n.d. 8t 9.68 0.29 9.00 40°75 0.13 0.10 15.58 0.08 23.27 n.d. 2381G 2381B B^t 41.88 0.86 9.13 011.11 0.03 0.41 0.07 21**.**83 1.37 n.d. 8 C Ti02 A1203 $cr_2^{0_3}$ $Fe_{20_{3}}$ Si02 Na₂0 PHN Fe0 MnO NiO CaO MgO

continued on next page.

ANALYSES OF MINERALS FROM FRANK SMITH KIMBERLITE PIPE

н

TABLE

1	Table I	(contin	nued)	GRANULAR INTERGROWTHS				
PHN	2349		235IA		235IB		2354	
	il	cpx	il	орх	il	opx	il	opx
Si02	0.10	53.41	0.13	55.64	0.09	56.43	0.12	56.82
Ti02	49.36	0.35	52.85	0.29	54.08	0.22	52.15	0.29
A1203	0.59	2.39	0.54	0.92	0.70	1.24	0.49	0.95
Cr203	0.77	0.32	0.71	0.06	1.18	0.10	0.43	0.02
Fe203	12.47		9.19		7.21		10.04	
FeO	25.86	4.77	23.76	7.52	22.93	8.28	24.11	7.68
MnO	0.24	0.11	0.20	0.16	0.25	0.14	0.23	0.16
NiO	0.13	n.d.	0.21	n.d.	0.20	n.d.	0.21	n.d.
MgO	10.24	16.82	13.16	33.63	14.21	32.80	12.59	33.77
Ca.O	0.02	18.90	0.04	1.08	0.02	0.79	0.04	1.09
Na ₂ 0	n.d.	1.84	n.d.	0.21	n.d.	0.29	n.d.	0.27
				ar filme (der soll Alexandri - Miller (der		the other which which they down		
Totals	99.78	98.91	100.7	9 99.51	100.87	100.29	100.41	101.05
Ca/(Ca	Mg)%	44 7		23		т 7		23
Cal/ (Ca	Hig 770	7707		2.07		101		20)
LAMELLAR INTERGROWTHS							HS	
				DAM	JUUAN IN.	Dicalion		
PHN	2	348A	2	348B		23	67	
PHN	2 il	348A cpx	2 il	cpx	gt	23 cpx	67 opx	chr*
PHN Si0 ₂	2 il 0.11	348A cpx 54.01	2 il 0.11	2348B cpx 54.58	gt 40.64	23 cpx 54.32	67 opx 57.87	chr * 1.65
PHN SiO ₂ TiO ₂	2 il 0.11 49.96	348A cpx 54.01 0.50	2 il 0.11 48.27	2348B cpx 54.58 0.42	gt 40.64 0.31	23 cpx 54.32 0.13	67 0px 57.87 0.05	chr * 1.65 3.55
PHN SiO ₂ TiO ₂ Al ₂ O ₃	2 il 0.11 49.96 0.91	cpx 54.01 0.50 2.29	2 il 0.11 48.27 0.75	54.58 0.42 2.30	gt 40.64 0.31 16.60	23 cpx 54.32 0.13 1.93	67 0px 57.87 0.05 0.55	chr* 1.65 3.55 7.62
PHN sio_2 Tio_2 Al_2o_3 Cr_2o_3	2 il 0.11 49.96 0.91 0.74	54.01 0.50 2.29 0.18	2 il 0.11 48.27 0.75 0.07	2348B cpx 54.58 0.42 2.30 0.01	gt 40.64 0.31 16.60 7.88	23 cpx 54.32 0.13 1.93 2.92	67 0px 57.87 0.05 0.55 0.39	chr* 1.65 3.55 7.62 44.63
PHN Si02 Ti02 A1203 Cr203 Fe203	2 il 0.11 49.96 0.91 0.74 12.25	54.01 0.50 2.29 0.18	11 0.11 48.27 0.75 0.07 14.80	2348B cpx 54.58 0.42 2.30 0.01	gt 40.64 0.31 16.60 7.88	23 cpx 54.32 0.13 1.93 2.92	67 57.87 0.05 0.55 0.39	chr* 1.65 3.55 7.62 44.63 7.96
PHN SiO_2 TiO_2 $A1_2O_3$ Cr_2O_3 Fe_2O_3 Fe_0	2 il 0.11 49.96 0.91 0.74 12.25 22.37	248A cpx 54.01 0.50 2.29 0.18 4.80	2 i1 0.11 48.27 0.75 0.07 14.80 21.73	2348B cpx 54.58 0.42 2.30 0.01 4.96	gt 40.64 0.31 16.60 7.88 7.92	23 cpx 54.32 0.13 1.93 2.92 2.48	67 0px 57.87 0.05 0.55 0.39 5.23	chr* 1.65 3.55 7.62 44.63 7.96 22.79
PHN SiO_2 TiO_2 $A1_2O_3$ Cr_2O_3 Fe_2O_3 FeO MnO	2 il 0.11 49.96 0.91 0.74 12.25 22.37 0.23	248A cpx 54.01 0.50 2.29 0.18 4.80 0.14	11 0.11 48.27 0.75 0.07 14.80 21.73 0.24	2348B cpx 54.58 0.42 2.30 0.01 4.96 0.14	gt 40.64 0.31 16.60 7.88 7.92 0.54	23 cpx 54.32 0.13 1.93 2.92 2.48 0.14	67 57.87 0.05 0.55 0.39 5.23 0.15	chr* 1.65 3.55 7.62 44.63 7.96 22.79 0.64
PHN sio_2 Tio_2 Al_2o_3 Cr_2o_3 Fe_2o_3 Feo Mno Nio	2 il 0.11 49.96 0.91 0.74 12.25 22.37 0.23 0.23	248A cpx 54.01 0.50 2.29 0.18 4.80 0.14 n.d.	2 i 1 0.11 48.27 0.75 0.07 14.80 21.73 0.24 0.15	2348B cpx 54.58 0.42 2.30 0.01 4.96 0.14 n.d.	gt 40.64 0.31 16.60 7.88 7.92 0.54 n.d.	23 cpx 54.32 0.13 1.93 2.92 2.48 0.14 n.d.	67 57.87 0.05 0.55 0.39 5.23 0.15 n.d.	chr* 1.65 3.55 7.62 44.63 7.96 22.79 0.64 0.20
PHN SiO_2 TiO_2 $A1_2O_3$ Cr_2O_3 Fe_2O_3 FeO MnO NiO MgO	2 il 0.11 49.96 0.91 0.74 12.25 22.37 0.23 0.23 12.45	248A cpx 54.01 0.50 2.29 0.18 4.80 0.14 n.d. 18.51	11 0.11 48.27 0.75 0.07 14.80 21.73 0.24 0.15 12.00	2348B cpx 54.58 0.42 2.30 0.01 4.96 0.14 n.d. 18.22	gt 40.64 0.31 16.60 7.88 7.92 0.54 n.d. 18.60	23 cpx 54.32 0.13 1.93 2.92 2.48 0.14 n.d. 16.35	67 57.87 0.05 0.55 0.39 5.23 0.15 n.d. 35.30	chr* 1.65 3.55 7.62 44.63 7.96 22.79 0.64 0.20 9.3 8
PHN SiO_2 TiO_2 Al_2O_3 Cr_2O_3 Fe_2O_3 FeO MnO NiO MgO CaO	2 il 0.11 49.96 0.91 0.74 12.25 22.37 0.23 0.23 12.45 0.03	248A cpx 54.01 0.50 2.29 0.18 4.80 0.14 n.d. 18.51 16.44	2 i 0.11 48.27 0.75 0.07 14.80 21.73 0.24 0.15 12.00 0.02	2348B cpx 54.58 0.42 2.30 0.01 4.96 0.14 n.d. 18.22 17.49	gt 40.64 0.31 16.60 7.88 7.92 0.54 n.d. 18.60 6.36	23 cpx 54.32 0.13 1.93 2.92 2.48 0.14 n.d. 16.35 18.12	67 57.87 0.05 0.55 0.39 5.23 0.15 n.d. 35.30 0.42	chr* 1.65 3.55 7.62 44.63 7.96 22.79 0.64 0.20 9.38 0.02
PHN SiO_2 TiO_2 Al_2O_3 Cr_2O_3 FeO_3 FeO MnO NiO MgO CaO Na ₂ O	2 il 0.11 49.96 0.91 0.74 12.25 22.37 0.23 0.23 12.45 0.03 n.d.	248A cpx 54.01 0.50 2.29 0.18 4.80 0.14 n.d. 18.51 16.44 2.11	2 il 0.11 48.27 0.75 0.07 14.80 21.73 0.24 0.15 12.00 0.02 n.d.	2348B cpx 54.58 0.42 2.30 0.01 4.96 0.14 n.d. 18.22 17.49 2.21	gt 40.64 0.31 16.60 7.88 7.92 0.54 n.d. 18.60 6.36 0.05	23 cpx 54.32 0.13 1.93 2.92 2.48 0.14 n.d. 16.35 18.12 3.18	67 0.05 0.05 0.55 0.39 5.23 0.15 n.d. 35.30 0.42 0.12	chr* 1.65 3.55 7.62 44.63 7.96 22.79 0.64 0.20 9.38 0.02 n.d.
PHN SiO_2 TiO_2 $A1_2O_3$ Cr_2O_3 Fe_2O_3 FeO MnO NiO MgO CaO Na_2O	2 il 0.11 49.96 0.91 0.74 12.25 22.37 0.23 0.23 12.45 0.03 n.d.	248A cpx 54.01 0.50 2.29 0.18 4.80 0.14 n.d. 18.51 16.44 2.11	2 il 0.11 48.27 0.75 0.07 14.80 21.73 0.24 0.15 12.00 0.02 n.d.	2348B cpx 54.58 0.42 2.30 0.01 4.96 0.14 n.d. 18.22 17.49 2.21	gt 40.64 0.31 16.60 7.88 7.92 0.54 n.d. 18.60 6.36 0.05	23 cpx 54.32 0.13 1.93 2.92 2.48 0.14 n.d. 16.35 18.12 3.18	67 opx 57.87 0.05 0.55 0.39 5.23 0.15 n.d. 35.30 0.42 0.12	chr* 1.65 3.55 7.62 44.63 7.96 22.79 0.64 0.20 9.38 0.02 n.d.
PHN SiO_2 TiO_2 Al_2O_3 Cr_2O_3 Fe_2O_3 FeO MnO NiO MgO CaO Na_2O Totals	2 il 0.11 49.96 0.91 0.74 12.25 22.37 0.23 12.45 0.03 n.d. 99.28	248A cpx 54.01 0.50 2.29 0.18 4.80 0.14 n.d. 18.51 16.44 2.11 98.98	11 0.11 48.27 0.75 0.07 14.80 21.73 0.24 0.15 12.00 0.02 n.d. 98.14	2348B cpx 54.58 0.42 2.30 0.01 4.96 0.14 n.d. 18.22 17.49 2.21	gt 40.64 0.31 16.60 7.88 7.92 0.54 n.d. 18.60 6.36 0.05 98.90	23 cpx 54.32 0.13 1.93 2.92 2.48 0.14 n.d. 16.35 18.12 3.18 99.57	67 0 px 57.87 0.05 0.55 0.39 5.23 0.15 n.d. 35.30 0.42 0.12 100.08	chr* 1.65 3.55 7.62 44.63 7.96 22.79 0.64 0.20 9.38 0.02 n.d. 98.44
PHN SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ Fe ₀ MnO NiO MgO CaO Na ₂ O Totals Ca/(Ca	2 il 0.11 49.96 0.91 0.74 12.25 22.37 0.23 0.23 12.45 0.03 n.d. 99.28	248A cpx 54.01 0.50 2.29 0.18 4.80 0.14 n.d. 18.51 16.44 2.11 98.98 39.0	11 0.11 48.27 0.75 0.07 14.80 21.73 0.24 0.15 12.00 0.02 n.d. 98.14	2348B cpx 54.58 0.42 2.30 0.01 4.96 0.14 n.d. 18.22 17.49 2.21 100.33 40.8	gt 40.64 0.31 16.60 7.88 7.92 0.54 n.d. 18.60 6.36 0.05 98.90	23 cpx 54.32 0.13 1.93 2.92 2.48 0.14 n.d. 16.35 18.12 3.18 99.57 44.3	67 0 px 57.87 0.05 0.55 0.39 5.23 0.15 n.d. 35.30 0.42 0.12 100.08 0.8	chr* 1.65 3.55 7.62 44.63 7.96 22.79 0.64 0.20 9.38 0.02 n.d. 98.44
PHN SiO_2 TiO_2 Al_2O_3 Cr_2O_3 Fe_2O_3 FeO MnO NiO MgO CaO Na_2O Totals Ca/(Ca)	2 il 0.11 49.96 0.91 0.74 12.25 22.37 0.23 0.23 12.45 0.03 n.d. 99.28	248A cpx 54.01 0.50 2.29 0.18 4.80 0.14 n.d. 18.51 16.44 2.11 98.98 39.0	11 0.11 48.27 0.75 0.07 14.80 21.73 0.24 0.15 12.00 0.02 n.d. 98.14	2348B cpx 54.58 0.42 2.30 0.01 4.96 0.14 n.d. 18.22 17.49 2.21 100.33 40.8	gt 40.64 0.31 16.60 7.88 7.92 0.54 n.d. 18.60 6.36 0.05 98.90	23 cpx 54.32 0.13 1.93 2.92 2.48 0.14 n.d. 16.35 18.12 3.18 99.57 44.3	67 0px 57.87 0.05 0.55 0.39 5.23 0.15 n.d. 35.30 0.42 0.12 100.08 0.8	chr* 1.65 3.55 7.62 44.63 7.96 22.79 0.64 0.20 9.38 0.02 n.d. 98.44

Nixon and Boyd

*secondary chromite octahedra in phlogopite.