SOME ASPECTS OF THE GEOCHEMISTRY OF KIMBERLITES FROM THE PREMIER MINE, TRANSVAAL, SOUTH AFRICA

H.W. FESQ¹, E.J.D. KABLE¹, and J.J. GURNEY²

¹NIM-WITS A.A.R.G., N.P.R.U., University of the Witwatersrand. ²Department of Geochemistry, University of Cape Town.

The Premier kimberlite pipe is unique in relation to other kimberlite occurrences in Southern Africa in that it is the only known Pre-cambrian kimberlite, >1150±15 m.y. (1), whereas all other occurrences are believed to be of Cretaceous age. It is intrusive into a plug of igneous rocks which is related to the well known Bushveld Igneous Complex (1950±150m.y.)

The Premier diatreme is a complex, multiple intrusion in which at least eight different types of kimberlite are macroscopically distinguishable, all containing diamonds in economic quantities. These different types are thought to be derivatives of three major brecciated basaltic kimberlites which are associated with separate intrusive events. In order of intrusion they are: Type 2 Brown→Type 1 Grey→Type 3 Black. Some of these kimberlites contain large numbers of lithic and basic rock fragments generally of Bushveld parentage as well as fragments and rafts of Waterberg quartzite (2).

Representative samples ($\sqrt{50}$ kg) of each type were collected at different levels within the mine and where possible, away from mixed contact zones.

Samples were analysed for major and trace elements by X-ray fluorescence, X.R.F. (3), instrumental neutron activation analysis, I.N.A.A. (4) and conventional chemical techniques. The average chemistry for each of the main Premier kimberlite types is presented in Tables 1,2. Data for other kimberlites are included for comparison (Table 1), particularly with respect to the varying degree and type of crustal contamination.

Kimberlites generally contain large numbers of crustal fragments, normally of the country rock into which they intrude (5). Their major element chemistry in particular will therefore reflect such contamination (Table 1), N.B. samples KN275/75 and 1982 with high Mg/(Mg+Fe) are relatively uncontaminated 'kimberlites'. Unless an attempt is made to remove the contribution of the major crustal contaminant (mixing model analysis), interpretation particularly with respect to the genetic relationship of kimberlite from major element chemistry can be misleading.

For example, from the Mg/(Mg+Fe) for Premier kimberlites a genetic differentiation relationship in the order: Black Type 3→Brown Type 2 may be inferred. However this is in disagreement with evidence available for the refractory elements (6) and the REE (Table 2, Fig. 1). Erroneous Fe values are a function of the overall composition and the amount of crustal contamination. This observation is even better illustrated by the kimberlites from the Bellsbank fissure system where contamination is due to high limestone assimilation in the Water Fissure which is definitely the least 'differentiated' of the Bellsbank kimberlites (6). The primitive REE pattern highlights both these observations (Fig. 1). The high amount of crustal contamination in Premier kimberlites is well illustrated by their high SiO₂ content particularly in Type 1 (Table 1). Of all the Premier kimberlites Type 2 Brown has the least variable chemistry indicating that it has not been affected by kimberlite mixing e.g. Type 1 and 2 (2). Crustal contamination is reflected by:

- (a) the inclusion of crustal fragments in the kimberlite magma; such contamination may be estimated by modal analysis (e.g. Type 1 Grey 43%, Type 3 Black 20%) and
- (b) the assimilation of crustal material, the amount of which is a function of the temperature of the kimberlite magma, its mode of emplacement and the composition of the crustal contaminant, e.g. it would be more difficult to assimilate basic than acid rocks or sediments.

Experiments on the induced graphitisation around mineral inclusions in Premier diamonds indicate emplacement temperatures from 850°C to 1050°C for Premier kimberlites (7). The higher temperature can probably be associated with the Type 2 Brown which on evidence of its chemistry assimilated some basic rocks of Bushveld parentage. REE GEOCHEMISTRY (Table 2, 3, Fig. 1).

A comparison of the REE geochemistry of Premier kimberlites with other South African kimberlites indicates that Premier kimberlites:

- (a) are basaltic (low REE) and
- (b) are derived from relatively undepleted mantle, probably from the same source region. Cr-diopsides, garnets and ilmenites as well as diamonds (9) studied from this source confirm the above observation. Compared with more differentiated micaceous kimberlites (e.g. 0G383,

Fig. 1) no Eu anomalies are present in Premier kimberlites. Eu depletion appears to be related to the differentiation of kimberlitic liquids and the crystallisation of phlogopite. The analysis of a 'primitive' phlogopite from a Bultfontein garnet peridotite nodule exhibits a negative Eu anomaly. Such an anomaly may be enhanced by phlogopites crystallising from a differentiating kimberlite magma. It is suggested that phlogopite superimposes its REE chemistry on the more differentiated micaceous kimberlites, which would explain the observed high Eu negative anomaly in Bellsbank Main Fissure kimberlites. These contain from 25-60% phlogopite and up to 6% apatite in the matrix (10).

Ilmenite is at present the only upper mantle mineral which we are aware of, which exhibits a positive Eu pattern. Large amounts of ilmenite fractionation would therefore be necessary to explain the Eu depletion in the more differentiated kimberlites. This is considered to be unlikely, although it has been established that ilmenites of changing composition crystallised from the Premier kimberlite magmas (11).

From the involatile and even volatile geochemistry of Premier kimberlites it appears that Type 2 Grey and Type 3 Black are closely related, the latter being the more differentiated product. However, all Premier kimberlites appear to have originated from the same source of the upper mantle, and since the Type 2 Brown was emplaced first (2), a possible age difference is implied between Type 2 Brown and the other types. This is confirmed by recent Rb/Sr age measurements (Allsopp, pers. comm.).

REFERENCES:

H.L. Allsopp et al, Earth Planet. Sci.Lett. <u>3</u>, 161 (1967).
 Anglo American Corp. of S.A., Ltd. Cons. Geol. Dep. Rep. (1969).
 J.P. Willis et al, in Proc. 2nd Lunar Sci. Conf. <u>2</u>, 1123 (1971).
 H.W. Fesq et al, J. Radio-anal. Chem. (in press).
 P.A. Wagner, The Diamond Fields of Southern Africa (1971).
 E.J.D. Kable et al, Int. Kimberlite Conf. (1973).

	LESOTHO 1982	39.19 0.17 0.114 0.33 8.33 8.33 8.16	0.21 0.05 0.01 11.99 2.84 2.67	94.5												
RICA - A COMPOSITION COMPARISON	LESCHO KN275/75	32.23 1.48 1.58 0.23 9.15 31.86	6.14 0.02 5.00 5.00 5.11 5.00 5.11	93.2							×	1011	JRE			
	NON. 1870	27.38 2.62 2.64 2.14 12.11 12.11 12.11 12.11 12.11 12.11 12.11	001000 840248 84024 83024 80000 80000000000	88,4	GABBRO SHALE	1320 1150 6490 53 453,4				FE I GREY	FE 3 MACI	WEST PIP	MAIN FISS			
	B/MF (7)	28 80 2 47 2 47 2 47 2 47 2 47 2 47 2 47 2 47	11.00 10.00 10.49 10.49 10.49 10.49 10.49	92,6	LIME- STONE		6490 53 3,4 45,8 5,3	122 1909 8,6	Va. Galwaga	PREMIER IN	PREMIER IN KOFFYFONTE	KOFFYFONTE EBUNIAEZER BELLSBANK BFLLSBANK				
	B/WF (10)	25,27 0,50 1,64 0,23 4,77 0,71 10,59	26,34 0,03 0,05 5,97 20,50 20,50	8.68	LINE- STONE	1190 1110 53	390 4 13,9 2,5	98 975 5.6	ŗ		3 FFY, -	EN/W -	e e			
	LESOTHO S4B	40,20 7,50 0,67 0,68 0,68 0,68	9,75 0,67 6,75 2,91 2,91 2,91	88,0	SHALE? GRANITE? (BASALT)				ž	A A	P/ KOX	EB	/a 1/8			
SOUTHERN A	EBEN./W (5)	34.92 0.78 0.11 0.01 5.21 0.087	15.85 0.41 2.09 5.30 5.35 5.35	89.2	SHALE (BASALT)	520 475 40	17350 80 3.3 13.4 1.6	217 5258 8.4								
PREMIER AND SELECTED KIMBERLITES FROM S	KOFFY. (10)	40.67 5.56 0.12 0.12 0.13 0.13 23.73	3,69 0,29 6,81 6,81 0,92	92.5	SHALF (BASALT)	690 1090 71	5690 44 1.8 8.6 2.0	129 3161 4.3		AMPLES ANALIYSED OF MR/(Mg+Fc) BERLITES FRON GURNEY AND ERRAHIM (1973)	(261)	EE				
	P/3 (4)	39.59 2.10 2.88 0.21 9.31 0.131 0.15	6.84 0.33 0.23 0.23 0.52 0.52	92.1	FELSITE (GAPRDO) XIMB. MIXING	1210 1170 86	13610 154 5.3 0.8	88 3024 6.6			ND EBRAHIM	SATELLITE PI	5	s, RSA.		
	P/1 (4)	48.46 1.76 4.12 0.19 0.19 0.15 0.15 23.015	4.46 0.74 4.52 4.52 2.21 0.83	91.5	QUARTZ- TTE FELSITE (GABBRO)	1060 950 73	6140 51 2.7 5.5 0.8	120 2274 6.9	ven		ION GURNEY A	G-LA-TERAE	NE PRALI FIF	RY PIPE, OF		
	P/2 (7)+	44.67 1.70 0.17 0.17 8.64 0.14	6.63 0.85 0.28 4.89 3.01 0.33	1.12	SHALES FELSITE (GABBRO)	890 870 72	.0880 104 7.1 1.5	105 3400 4.7	TAND DC ANAT		IBERLITES FR	- LETSEN	- LEXPHA	- MONAST		
TARLE 1		SiO2 TiO2 Al2U9 Cr2O9 EFe2O9 MuO	Cao Na 6 P2 0 P2 0 H2 0 Co Co	Mg/(Mg+Fe)*	PRED. CRUSTAL CONTAMI- NATION PPm	Construction of the second sec	Rb Ccs U	K/Rb K/Cs Th/U	· au dagana ·	MOLAR RATIO	LESOTHO KIM	S4B KN77C/7C	1982	** LOSS ON IGA		
(7)	J. (1	W. Harri 972)	s and E.	R.	Vance,	Co	ntr. M	linera	1.	an	d P	'etı	rol.	<u>35</u> ,	227	
(8) (9) (10	(I I. H.) J.	D. MacGr W. Fesq, L. Bosch	egor, Mi D.M. Bi . Trans.	ine ibb G	ral. So y et al eol. So	oc. 1	Amer. nt. Ki S.A. 7	Spec. mber1	Pa ite 75	ap. ≥ C 5 (<u>3</u> , onf 197	51	1 (1 (197	.970) '3)		
(11 (12) J.) J.	J. Gurne J. Gurne	y et al, y and S	, L	esotho brahim,	Kim Le	berlit sotho	e Vol Kimbe	r1i	ed Lte	. P Vo	P.H.	. Ni , ed	xon . P.I	(1973 4. Ni) .xon
 (1973) (13) L.A. Haskin et al, in Origin and Distribution of the Elements, ed. L.H. Ahrens, 889 (1968) 									d.							
L.A. Haskin et al (1966), in Physics and Chemistry of the Earth								arth,								
	$\frac{7}{R}$,	169 H. Mitch	ell et a	a1	(1973),	, Le	sotho	Kimbe	r1i	ite	Vc		, ed	. P.1	H. Ni	.xon

TABLE 2 Sr	, Ba AN KIMB	D THE	REE S AND	IN PREMIE SOME KIMBI	R AND ERLITE	SELEC MINER	TED SOU ALS	TH AF	RICAN		
KINBERLITES		Sr	Ba	La	Ce	Nd	Sm	Eu	ТЪ	Yb	Lu
PREMIER											
Type 2 Brown	$(7)^{+}$	401	507	38.0	59	< 25	4.8	1.25	0.41	1.1	0.24
Type 1 Grey	(4)	183	211	27.6	49	< 25	3.7	0.95	0.39	0.9	0.14
Type 3 Black	(4)	492	1018	32.2	55	< 25	3.7	1.03	0.49	0.7	0.15
KOFFVFONTEIN GROUP											
KOFFYFONTEIN	(10)	394	229	48.9	102	∿ 3S	5.5	1.54	0.83	0.9	0.14
EBENHAEZER West	(5)	350	379	54.9	91	n 40	5.7	1.45	0.93	1.0	0.14
East	(5)	503	256	83.9	157	80	8.5	2.17	1.09	0.9	0.14
BELLSBANK GROUP											
WATER FISSUPE	(10)	430	128	103	198	70	8.1	2.02	1.00	1.0	0.11
BOBBEJAAN FISSURE	(6)	1230	4720	315	523	152	17.3	4.13	2.02	2.1	0.20
OG 382 HOLIIDAY & DE BRUYN		1120	4900	353	585	150	20.3	4.50	2.33	2.2	0.18
MAIN FISSURE	(3)	1520	2540	293	500	146	16.2	3.79	1.79	1.7	0.16
OG 381 DE BRUYN MINE (BLOW)		715	1890	870	1910	\$60	104	5.35	9.23	3.7	0.47
OG 383 DE BRUYN MINE		972	1830	1120	2080	780	185	5.44	18.9	4.4	0.52
MULLERSVLEI		1220	3340	174	254	150	15.4	3.49	0.72	1.8	0.22
DU TOITSPAN^				200	510	134	11.6	0.28		1.20	0.16
MGNASTERY ^X				97	243		12.6	3.70	1.30	0.39	
KIMBERLITE MINERALS											
SOUTH AFPICAN CHRCME DIOPSIDE	(16)			7.5	34.0		3.02	0.95	0.52		
PREMIFR CHROME DIOPSIDE (AVE)				2.4	18.4		1.44	0.47	0.21		
PREMIER CARNET (AVE)				0.25	0.8		0.91	0.58		3.1	0.44
PREMIER ILMENITE	(100)			(<0.1)			<0.4	0.23			
PHLOGOPITE FROM DULT PONTEIN GARNET PER POTITE	- 1-		310	0.5	15.8		∿C.6	0.15	0.15	< 0.10	

118

• DATA FROM HASKIN FT AL (1965)

* DATA FROM MITCHELL ET AL (1973)

NUMBER OF SAMPLUS ANALYSLD ALL ANALYSES EXPRESSED IN FPM +

TABLE 3 : CHONDRITE NORMALISED REE RATIOS

	La/Eu	La/Sm
Chondrite (13)	4.78	1.82
Premier Type 2 (P) Type 1 Type 3	6.4 6.1 6.5	4.3 4.1 4.8
Koffyfontein (K)	6.6	4.9
Bellsbank Water Fissure (WF)	11.2	7.3
OG 382	16.4	9.5
OG 381	34.0	4.6
QG 383	36.4	3.3
Cr-diopside S.A. ave (Diop)	1.6	1.4
Premier Cr-diopside (P.Diop)	1.1	0.9
Premier Garnet (P)	0.1	0.2
Premier Ilmenite	0.1	<0.1
Phlog. (Table 2)	1.3	0.8