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Introduction 

 

The application of machine learning techniques in the earth sciences is relatively rare despite the 

availability of large, suitable datasets. The chemistry of diamond indicator minerals is one such 

dataset that has been routinely and consistently collected for the purposes of exploration and research 

for at least the last 50 years. There are established methodologies for interpreting these data, 

particularly for garnet (e.g. Gurney, 1984; Grütter et al., 2004), which are in widespread use by 

diamond explorers today. The existing methodologies are effective at categorising and prioritising 

garnet chemical data, in most cases by using binary or linear cuts in the data for one or more major-

element variables. The self-organising map (SOM) is a variety of machine learning technique which 

organises data based on all input variables simultaneously. By applying this technique to garnet 

compositional dataset, relationships emerge which are not apparent in diagrams traditionally used for 

garnet indicator data interpretation. These relationships can be used as the basis of an exploration tool 

which more effectively sub-divides and prioritises garnet data from all parageneses. 

 

The SOM Method and Dataset 

 

The SOM is a data analysis and visualisation tool (Kohonen, 2001). It is a vector-based unsupervised 

clustering technique, meaning no prior knowledge of initial grouping is required. The data are 

organised by the SOM according to similarity using a competitive, iterative training process. The 

output of the SOM is a two-dimensional representation (a “map”) of the multi-variate input data. The 

map is composed of a collection of nodes arranged in a grid. In this map, topology is preserved such 

that points lying close to one another on the map are more similar in composition than points lying far 

apart. Toroidal grids can improve results and are commonly used.  Each node in the grid represents a 

particular n-dimensional vector, referred to as the weight vector, where n is the number of variables 

used to construct the map. The size of the map is determined by the user and can be varied according 

to task or the size of the input data. Small maps have the effect of clustering the data while large maps 

are more effective for visualising topology. 

 

For this study 151,044 major-element analyses of garnet were compiled. This includes data from a 

wide variety of rock types in order to capture a comprehensive picture of garnet major-element 

compositions. Oxides of the eight major elements of the common garnet series end-members (SiO2, 

TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, CaO) were used as input variables. Minor oxides, such as 

Na2O, were not included due to incompleteness in the dataset and concerns about the quality and 

precision of some measurements. A toroidal SOM with 8064 nodes (84 by 96) was then constructed 

from this data using the SiroSOM software package (Fraser and Dickson, 2007).  

 

Results 

 

A convenient way to visualise the SOM result is by plotting the magnitudes of individual weight 

vector components in space. The garnet SOM has eight-dimensional weight vectors; one dimension 

for each of the major-elements. Overlaying these images then gives a picture of the distribution of the 

elements relative to one another in garnet compositional space.  Maps of the Cr2O3 and CaO 

component vectors are shown as an example in Figure 1A and 1B, respectively.  
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Figure 1: SOM weight vector component plots for garnet Cr2O3 and CaO concentrations, in weight percent (A 

and B), and the interpreted map (C). The garnets highest in CaO (lying in the map area indicated by arrow 1 in 

A and B) represent the grossular and andradite garnet end-members, nearby nodes on the map rich in Cr2O3 with 

modest CaO (indicated by arrow 2) are garnets dominated by the uvarovite molecule, and garnets poor in CaO, 

but rich in Cr2O3 (indicated by arrow 3; these garnets are also rich in MgO which is not depicted here) are 

dominated by the knorringite molecule. The distribution of the chemistry of garnet inclusions in diamond (C; 

black dots) have been used to define target compositional fields for new data (the purple, red and orange 

outlined areas). Due to the toroidal grid geometry, opposite edges of the map are connected (left-right and top-

bottom). 

 

The original 151,044 data points are divided across the 8064 nodes based on their Euclidian distance 

from the weight vector of each node. The node with the minimum distance between the weight vector 

and the training vector is referred to as the best matching unit (BMU). Highlighting the BMUs where 

specific groups of the reference data are present reveals spatial patterns on the SOM related to 

similarities in garnet composition. The distribution in SOM space of the compiled data for garnet 

inclusions in diamond is shown in Figure 1C. The diamond inclusions cluster into several coherent 

compositional groups, separated by zones where diamond inclusions are sparse or completely absent. 

These clusters have been used to define target compositional fields on the SOM map. Defining the 

target in this way is based on the observations that: 1) there is a definite association between these 

garnet compositions and diamond; and 2) coherent clustering of the majority of diamond inclusion 

data suggests a common process (or processes) is responsible for the formation of most diamond 

globally, which is reflected in the garnet composition.  

  

To understand how effective the SOM target compositional fields are at identifying a diamondiferous 

source rock in comparison to existing methods, the reference data have been classified using the 

scheme of Grütter et al. (2004) and compared against the SOM result in Figure 2, and compiled in 

Table 1. In this comparison, the diamond inclusion data have been excluded to avoid bias. The 

proportion of G10D garnets coming from diamondiferous sources is high (84.4%), and similar to the 

values for the peridotitic SOM target fields (86.3%). Note the SOM target fields contain a significant 

lherzolitic (G9) component (Fig. 2D). The eclogitic/pyroxenitic SOM target fields define an 

extremely wide compositional range (Fig. 2F), but despite this the proportion of garnets from 

diamondiferous sources in the target field remains high (90.2%). Without reliable Na2O data for a 

majority of garnet, the comparison to the scheme of Grütter et al. (2004) for eclogitic and pyroxenitic 

lithologies cannot be evaluated. 

Group of Data 

Count of Garnets 
from Barren 

Sources (Count of 

Sources) 

Count of Garnets 

from 
Diamondiferous 

Sources (Count of 

Sources) 

Count of Garnets 

from Sources with 
Unknown 

Diamond Content 

(Count of Sources) 

Effectiveness (Count 
Diamondiferous/(Count 

Diamondiferous + 

Count Barren))*100 

G10D 450 (59) 2,426 (191) 2 (1) 84.4% 

Peridotitic SOM Target 323 (55) 2,033 (184) 8 (2) 86.3% 

Eclogitic/Pyroxenitic SOM Target 297 (50) 2,722 (141) 428 (2) 90.2% 

All Reference Data 75,407 (181) 68,066 (298) 3,649 (4) N/A 

Table 1: Effectiveness of classification technique on reference data, exclusive of diamond inclusion data. 
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Figure 2: A comparison of the distribution of garnet 

compositions on SOM and Cr2O3-CaO plots. A,B) 

Distribution of G10D garnets in SOM space and Cr2O3-CaO 

space, respectively; C,D) Distribution of peridotitic SOM 

target garnets in SOM space and Cr2O3-CaO space, 

respectively; E,F) Distribution of eclogitic and pyroxenitic 

SOM target garnets in SOM space and Ca-Mg-Fe (molar) 

space, respectitvely. SOM map colours same as Figure 1. 

The lines on the Cr2O3-CaO plots are the GDC of Grütter et 

al. (2006) and the G9/G10 dividing line of Gurney (1984). 

 

Discussion and Conclusions 

 

Early work on garnets established the empirical link 

between host rock and diamond based on Cr2O3-CaO 

relationships. The SOM technique presented here is an 

extension of this work into eight dimensions, with the 

same empirical focus on diamond association. The 

observed clustering of diamond inclusion data has 

been used to define garnet target composition and 

results in the ability to predict whether the garnet host 

rock was diamondiferous with similar accuracy to 

existing classification schemes for peridotitic 

lithologies. However, the peridotitic SOM target 

clusters also capture a lherzolitic (G9) component 

while maintaining a similar accuracy to the 

comparison scheme here. This population of garnets 

may reflect the minor population of lherzolite-associated inclusions found in most diamond-bearing 

source rocks. It is not possible to directly compare the effectiveness of the eclogitic and pyroxenitic 

SOM target fields to commonly used techniques based on Na2O, but the SOM can be shown to 

correctly predict a diamondiferous source with a high degree of accuracy. These factors make the 

garnet SOM a powerful tool for the prediction of diamond potential of a host rock without the 

exploration expense of fusion for microdiamonds or drill testing, particularly for indicator suites 

dominated by lherzolitic or eclogitic lithologies which are traditionally difficult to evaluate. 

 

The SOM technique is based entirely on data relationships and as a result does not necessarily require 

the detailed petrological and mineralogical research and understanding that have developed around 

indicator mineral interpretation. This makes it well suited to application to other minerals with a 

smaller knowledge base than garnet, such as chromite and ilmenite, which also have large available 

datasets. 
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