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Introduction 
 
A range of geochronology techniques have been applied to kimberlites and related rocks, including the 
Rb-Sr phlogopite, U-Pb perovskite, U-Pb zircon, 40Ar/39Ar phlogopite and Fission Track apatite 
methods. These approaches all have specific advantages and disadvantages, with the Rb-Sr phlogopite 
and U-Pb perovskite methods being the most commonly used for kimberlite geochronology. 
 
In this study, we compare the Rb-Sr phlogopite, U-Pb perovskite and 40Ar/39Ar phlogopite/kinoshitalite 
dating methods, applied to kimberlites and orangeites from the Karelian craton, Finland. This region 
includes the Kaavi-Kuopio Group I kimberlite province, located along the southwestern margin of the 
craton, the Kuusamo Group I kimberlites in the north-central part of the craton, and orangeites and 
related alkaline rocks of the Lentiira-Kuhmo-Kostomuksha area in the centre of the craton straddling 
the eastern Finland – Russia border.  
 
Previous Work 
 
Previously published 206U/238Pb perovskite ages for the Kuusamo Group I Kattaisenvaara and 
Kalettomanpuro kimberlites are 759 ± 15 Ma and 756.8 ± 2.1 Ma, respectively (O’Brien and Bradley 
2008). 206U/238Pb perovskite results for the Kaavi-Kuopia kimberlites give an age range of 589 – 626 
Ma (O’Brien et al. 2005). 40Ar/39Ar analyses of phlogopite from the Seitaperä (Pipe 16, two samples) 
and Lentiira orangeites (Lentiira-Kuhmo cluster) yielded weighted mean ages of 1202 ± 3 Ma, 1199 ± 
3 Ma and 1204 ± 4 Ma, respectively (O’Brien et al. 2007). These results are broadly similar to Rb-Sr 
data reported for orangeite samples from the Kostomuksha cluster (Belyatsii et al. 1997; Nikitina et al. 
1999), which give a recalculated age of 1232 ± 10 Ma (2s; MSWD = 35) (O’Brien et al. 2007).  
 
Methods 
 
Handpicked phlogopite and kinoshitalite micas were washed in water, 2M HCl, and dissolved in HF-
HNO3. Sample solutions were equilibrated with a 85Rb-84Sr tracer, with Rb and Sr extracted on Eichrom 
Sr resin and cation resin columns. Isotopic analyses were carried out on a Nu Plasma MC-ICPMS 
(University of Melbourne). 87Rb/86Sr ratios determined by isotope dilution have an external precision 
of ±0.5% (2s). Isochron ages were calculated using the ISOPLOT software from the Berkeley 
Geochronology Centre (www.bgc.org.au). The decay constant of 87Rb is 1.397E-11/yr. 
 
Phlogopite and kinoshitalite grains were irradiated in the Oregon State University reactor, together with 
the monitor Fish Canyon Tuff sanidine (28.126 Ma; Phillips et al. 2017). Single grain 40Ar/39Ar step-
heating analyses were conducted on a multi-collector ARGUSVI mass spectrometer (University of 
Melbourne). Ages were calculated using the atmospheric ration of 298.56 ± 0.31 (Lee et al. 2016) and 
the decay constants of Steiger  and Jäger (1977). Plateau ages were calculated using ISOPLOT. 
 
Results 
 
Rb-Sr and 40Ar/39Ar analyses of phlogopite and kinoshitalite from representative samples of Kuusamo 
kimberlites produced indistinguishable ages of 747 ± 4 Ma and 747.8 ± 1.0 Ma (2s), respectively (Figs. 
1, 2), broadly similar to previous U-Pb perovskite results from the same localities.  



- 2 - 
 
 

 
Rb-Sr analysis of three leach aliquots from a Kostomoksha orangeite dyke (KOS OL) give an isochron 
age of 1180 ± 5 Ma (Fig. 1). 40Ar/39Ar analyses of single phlogopite grains from the same sample 
produced slightly discordant age spectra, with most ages in the range 1200 – 1210 Ma. 40Ar/39Ar analyes 
of phlogopite from other orangeites in the nearby Lentiira-Kuhmo cluster produced more consistent 
results, although only one sample produced a plateau age – 1204.4 ± 1.2 Ma (2s) (Fig. 3). No perovskite 
was recovered from the orangeite localities. 
 

 

 
Figure 1. Rb-Sr isochron plots for leached separates of kinoshitalite from two Kusammo Group I 
kimberlite (Kalettomanpuro - sample KP01-04; Kattaisenvara – sample KV001-61.4m; orange and red 
symbols, respectively) and from a Kostomoksha orangeite (sample Kos-Ol; blue symbols). 
(uncertainties are ±2s). 
 

 

 
Figure 2. 40Ar/39Ar step-heating age spectrum for kinoshitalite extracted from the Kalettomanpuro 
Group I kimberlite (sample KP01-04), Kuusamo cluster. This sample shows a plateau age of 747.8 ± 
1.0 Ma (2s). 
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Figure 2. 40Ar/39Ar step-heating age spectrum for phlogopite extracted from the Seitaperä orangeite 
intrusion in the Kuhmo region (sample 6501-B-2). This age spectrum shows discordance in the low 
temperature steps, with the higher temperature steps yielding an plateau age of 1204.4 ± 1.2 Ma (2s). 
 
Discussion 
 
The concordance of the Rb-Sr and 40Ar/39Ar results (748 Ma) obtained on the Kuusamo kimberlite 
samples provides confidence in the age of these localities. However the results are distinctly younger 
than the most precise 238U/206Pb perovskite age reported for the Kuusamo cluster Kalettomanpuro 
kimberlite (756.8 ± 2.1 Ma; O’Brien and Bradley, 2008). In contrast, the Rb-Sr and 40Ar/39Ar ages 
reported for the Lentiira-Kuhmo-Kostomuksha orangeites are less consistent, with Rb-Sr ages (1180 ± 
5 Ma, 1232 ± 10 Ma) bracketing 40Ar/39Ar results (1200 – 1210 Ma). Unfortunately, U-Pb perovskite 
data could not be obtained from these localities. Although the current results provide the most precise 
estimates for the time of kimberlite/orangeite magmatism in Finland, this study illustrates the 
importance of using multiple geochronology methods for precise and accurate determination of 
kimberlite and orangeite emplacement events.  
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