

Melting of hydrous-carbonated eclogite at 4–6 GPa and 900-1200°C: implications for the sources of diamond-forming fluids.

Oded Elazar¹, Ronit Kessel^{1,2} and Oded Navon^{1,3}

¹The Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel, oded.elazar@mail.huji.ac.il 2 ronit.kessel@mail.huji.ac.il, ³ oded.navon@mail.huji.ac.il

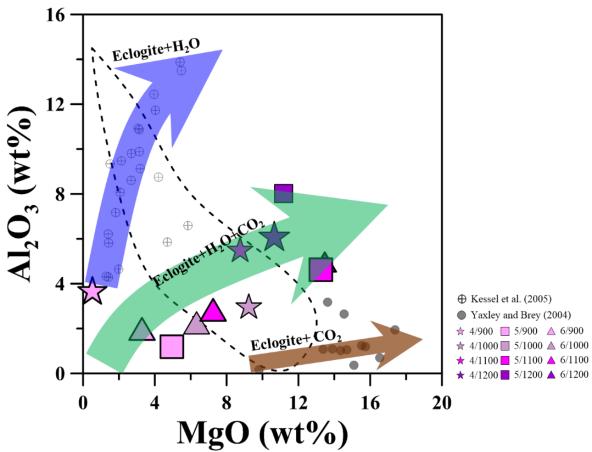
Introduction

Eclogites play a significant role in geodynamic processes, transferring large amounts of basaltic material and volatiles (chiefly CO₂ and H₂O species) into the earth's mantle via subduction. They are also linked to formation of high density fluid inclusions in diamonds (HDF's). Previous studies on eclogite melting focused on two end member systems: either carbonated or hydrous eclogites. Here we focus on a hydrous carbonated eclogitic system in order to define the position of its solidus and determine the fluid and melt compositions at 4-6 GPa and 900-1200°C. In contrast to procedures commonly adopted in the past, we rely on direct measurements of the liquid phase (melt/fluid/supercritical liquid) compositions in determining the solidus location instead of relying on solid mineral compositions and/or textural criteria. The variations in the chemistry of the liquid phase enable us to discuss the role of eclogites in the sources and formation of HDFs found in diamond inclusions.

Analytical Results

All experiments contained garnet and clinopyroxene, representing an eclogitic assemblage and are in equilibrium with a H_2O and CO_2 -rich fluid or melt. At 4-5 GPa and 900°C a large amount of H_2O and CO_2 in the liquid phase indicates the presence of an aqueous-carbonated fluid in equilibrium with the eclogite solid assemblage. A stepwise decrease in the H_2O and CO_2 contents of the liquid between 1000-1100°C is coupeled with a stepwise increase in other oxides suggesting that the solidus is located at these conditions. At 6 GPa a smooth decrease in H_2O and CO_2 contents of the liquid phase with increasing temperature is observed. This smooth change indicates the existence of a supercritical fluid and the existence of a second critical end-point for the eclogite+ H_2O+CO_2 system at ~5.5 GPa and ~1050°C.

Table 1: Determined liquid composition coexisting in equlibrium with eclogite as obtained in this study.


P (GPa)	4	4	4	4	5	5	5	5	6	6	6	6
T	900	1000	1100	1200	900	1000	1100	1200	900	1000	1100	1200
$SiO_2^{\mathbf{a}}$	81.09	43.84	47.53	44.43	68.52	39.64	39.84	42.76	69.25	50.6	48.83	36.35
TiO_2	0.41	2.42	2.45	2.94	0.76	1.79	2.84	3.16	0.63	1.63	2.33	2.58
Al_2O_3	4.79	3.31	6.2	6.82	1.33	3.71	5.26	9.1	2.23	2.54	3.21	4.96
FeO	0.53	10.5	9.95	11.97	9.24	12.92	14.47	12.42	4.3	6.43	7.48	14.28
MgO	0.58	10.41	9.93	12.01	5.54	9.89	15.09	12.69	3.69	7.15	8.22	15.25
CaO	4.07	19.43	19.03	18.14	9.56	24.28	19.25	17.25	13.53	27.5	27.12	17.03
Na_2O	6.73	8.93	4.56	3.39	3.1	7.03	3.27	2.32	4.73	3.22	2.37	8.93
K_2O	1.8	1.15	0.3	0.27	1.94	0.72	NA	0.22	1.61	0.91	0.41	0.59
Cr_2O_3	0.005	0.03	0.05	0.04	0.02	0.02	NA	0.08	0.03	0.02	0.01	0.03
$H_2O_{mole\ fraction}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	66.78	60.63	40.65	30.32	66.93	60.96	42.14	29.9	66.8	56.7	49.3	53.2
$H_2O{+}CO_{2mole\ fraction}$	82.45	83.48	57.96	44.65	89.06	85.95	60.08	44.03	91.2	78	68.5	78.3

- a. Calculated CO₂ and H₂O free basis normolized to 100%.
- b. Mole fractions of H_2O and H_2O+CO_2 were calculated using the hydrous-carbonated fluid/melt compositions.

At 4-6 GPa and 900°C, the hydrous carbonated fluids we found are silica-rich and mostly consist of H_2O and CO_2 with very little carbonate content. They are not represented in the naturally occurring HDFs, but are similar in composition to recent thermodynamical computations done by Sverjensky and Haung (2015). They calculated, using a thermodynamic model, a hypothetical composition of a siliceous fluid after reaction with eclogite at 5 GPa and 900°C and predicted that such a fluid can contain significant amounts of CO_2 (47 wt% relative to ~34 wt% in this study).

At 4-6 GPa and $1000-1100^{\circ}$ C the composition of the fluids reported here fall generally between those of silicic and low-Mg HDFs. The Al₂O₃, CaO, MgO and FeO content of the fluid increases with rise in temperature, while the Na₂O content remains relatively constant. At 1200° C, the composition of the determined melts is close to the bulk composition of the system (F=70%). As such, this composition is not representative of natural systems.

The fluid and near solidus melt compositions reported in this study indicate that the hydrous carbonated eclogite system is a possible source rock for HDFs whose composition is intermediate between low-Mg carbonatitic and silicic endmembers. We suggest that the silicic-carbonatitic array is not the result of continues melting of an eclogite source, but rather, of variations in the H_2O/CO_2 ratio of the fluid.

Fig 1: Al₂O₃ vs MgO variation diagram with liquid compositions from Kessel et al. (2005), Yaxley and Brey (2004) and this study (Water and CO₂-free compositions, corrected for lack of K₂O). Near solidus compositions in the eclogite+H₂O and eclogite+H₂O+CO₂ plot within the array charted by the low-Mg carbonatitic to silicic array (Wiess et al, 2009) suggesting that incipient melting of heterogeneous eclogitic sources as a possible mechanism for the production of the various HDf compositions.

References

Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2005) The water–basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C. Earth and Planetary Science Letters 237(3):873-892

- Sverjensky DA, Huang F (2015). Diamond formation due to a pH drop during fluid—rock interactions. Nature communications (6).
- Yaxley, GM, Brey GP (2004). Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contributions to Mineralogy and Petrology 146(5):606-619.
- Weiss Y, Kessel R, Griffin W.L, Kiflawi I, Klein-BenDavid O, Bell D.R, Harris J.W., Navon, O (2009) A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos, 112, pp 660-674.