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INTRODUCTION 

The story of diamonds is interwoven with that of 

kimberlitic volcanism (Gurney et al., 2010), but the genetic 

relationship between them has been debated ever since 

kimberlite was first identified.  At first, diamonds were 

believed to be phenocrysts from early crystallization phases 

of the kimberlitic magma (Dawson, 1971; Harte, 1980).  

However, evidence for deep lithospheric pressures for the 

entrapment of inclusions (see reviews by Meyer, 1987; 

Stachel and Harris, 2008), the occurrence of diamonds in 

lamproites and mantle xenoliths, and the recognition that 

most diamonds are much older than their host kimberlite 

(Richardson et al., 1984; Gurney et al., 2010) has led to a 

consensus that most diamonds are xenocrysts in kimberlites.   

The case for a kimberlitic origin was still raised for fibrous 

diamonds (Javoy et al., 1984; Boyd et al. 1987).  However, 

the compositions of the high-density fluids (HDFs) they 

have trapped indicate that they are xenocrysts as well.  

Navon et al. (1988) pointed out a broad similarity in major-

element composition between the fluids trapped in fibrous 

diamonds and the bulk compositions of Group II 

kimberlites, and suggested a genetic link at depth.  A 

general similarity between the trace-element abundance 

patterns of HDFs and kimberlites was noted first by Akagi 

and Masuda (1988) and later by Schrauder et al. (1996) 

Zedgenizov et al. (2007), Tomlinson et al. (2009) and Rege 

et al. (2010), but no attempt has been made to test this idea 

quantitatively.  

In the present work we compare the trace-element data of 

high-Mg carbonatitic HDFs from Kankan, Guinea, and 

Udachnaya, Sibiria, with that of kimberlites and consider 

models for a possible genetic links between them.   

 

HIGH-Mg CARBONATITIC HDFs 

The high-Mg carbonatitic HDFs are characterized by very 

high MgO and CaO content.  The SiO2 and Al2O3 content 

are low and the K2O content is variable.  It is very high in 

Siberian HDFs and lower in Guinean ones (Klein-BenDavid 

et al., 2009a; Weiss et al., 2009).  All are highly enriched in 

the most incompatible trace-elements, with levels of up to a 

few thousand times the primitive-mantle values (Figure 1).  

The Kankan high-Mg carbonatitic HDFs show depletion of 

K, Rb, Cs, Nb and Ta and enrichment in Ba, Th, U and 

LREE relative to the Siberian HDFs.  These differences in 

the highly incompatible elements (Cs–Sr) define two 

characteristic patterns.  Ratios such as La/Nb, Th/Nb, 

Nb/Rb and Sr/Rb highlight these differences and can be 

used to distinguish between the two suites.  Elements that 

are more compatible than Sr show similar characteristics 

and define overlapping patterns (Figure 1). 
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Figure 1: Trace-element patterns of high-Mg carbonatitic HDFs.  The 

different symbols represent the trapped HDFs in six Udachnaya diamonds 

while the shaded area represents the range for the HDFs in three Kankan 

diamonds.  The uncertainties on the values of Yb and Lu are large and they 

can be regarded as qualitative only.  Primitive-mantle values are from 

McDonough and Sun (1995). 

 

THE KIMBERLITE CONNECTION   

The major-element compositions of the high-Mg HDFs 

(Klein-BenDavid et al., 2009a; Weiss et al., 2009; 

Zedgenizov et al., 2007, 2009) resemble experimentally-

produced near-solidus melts of carbonate-bearing peridotite 

(Brey et al., 2008; Dasgupta and Hirschmann, 2007).  The 

high-pressure experimental results of Dalton and Presnall 

(1998a,b) in the system CaO–MgO–Al2O3–SiO2–CO2 

connect the high-Mg carbonatitic HDFs and the near-

solidus melts of carbonated peridotite with both Group I 
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and Group II kimberlites (Figure 2).  This suggests that with 

continuous heating, an initial high-Mg carbonatitic fluid 

becomes poorer in CaO and richer in SiO2, Al2O3 and MgO 

and evolves toward a kimberlitic melt. 

The trace-element patterns of Udachnaya high-Mg HDFs 

exhibit close similarity to those of Group I kimberlites from 

Africa, Canada, Siberia, Greenland, Finland, India and 

Brazil (Figure 3).  Compared to Group II kimberlites the 

Udachnaya high-Mg HDFs reveal higher Nb and Ta relative 

to Ba, Th, U, La and Ce.  This can be seen best using La/Nb 

vs Th/Nb diagram.  The Udachnaya HDFs fall in the field of 

Group I kimberlites,  whereas the Kankan high-Mg HDFs, 

with their lower Nb and Ta and higher correlative ratios, 

fall close to Group II kimberlites (Figure 3).  

Overall, the major- and trace-element similarities suggest a 

genetic link between the high-Mg HDFs from Udachnaya 

and Group I kimberlites and between Kankan HDFs and 

Group II kimberlites.  
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Figure 2: Major-element plots comparing HDFs and kimberlites with 

near-solidus melts of carbonated peridotite.  The trend of kimberlites to 

much higher MgO/CaO reflects assimilation of olivine.   

 

CRYSTALLIZING THE ASCENDING KIMBERLITE 

Cooling of kimberlitic melt and crystallization of olivine, 

garnet, pyroxene, carbonate and ilmenite may lead to the 

formation of high-Mg carbonatitic residual fluids.  Figure 4 

shows the trace-element pattern of the residual fluid after 

80% crystallization.  For most elements, the overall pattern 

of the resulting fluid is very similar to that of the measured 

high-Mg HDF.  It is harder to reconcile the low initial K2O 

content of the kimberlite with the high K2O of the Siberian 

HDFs, or their similar water content, with the predictions of  
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Figure 3: Trace-element characteristics of high-Mg carbonatitic HDFs and 

kimberlites. (a) The average trace-element pattern of high-Mg carbonatitic 

HDFs in diamonds from Udachnaya and Kankan, worldwide average 

Group I kimberlite pattern (green squares) as determined by averaging the 

compositions of Group I kimberlites from Africa, Canada, Siberia, 

Greenland, Finland, India and Brazil (thin black lines within the light green 

area) and the average pattern of South African Group II kimberlites. (b) 

La/Nb vs Th/Nb values in Group I and Group II kimberlite compared with 

high-Mg carbonatitic HDFs in Kankan and Udachnaya diamonds. See 

Weiss et al. (2011) for data sources. 
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Figure 4: Crystallization of kimberlite to form high-Mg HDF. Ti 

concentration is based on the mass balance calculation of the cumulate. 

The values for the average Group I kimberlite are as in Figure 3. 
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 a fractional crystallization model.  However, these 

discrepancies cannot fully dismiss such a scenario, as the 

K2O content of the kimberlite may have been higher at 

depth (Kamenetsky et al., 2004) and the water discrepancy 

may have its origin in the near-surface modification of the 

kimberlite (Sheppard and Dawson, 1975; Bell et al., 2004).    
 

PARTIAL MELTING OF SIMILAR SOURCES  

Another way to test the linkage between kimberlites and 

high-Mg HDFs is by modeling them as product of melting 

of a common source.  We calculated the trace element 

concentrations of peridotite (66% olivine, 26% 

orthopyroxene, 3% clinopyroxene and 5% garnet) in 

equilibrium with the Udachnaya high-Mg HDFs, average 

Udachnaya kimberlite, an average South African Group I 

kimberlite and a worldwide average of Group I kimberlites 

(Figure 5a).  All the calculated sources have similar 

patterns.  The closest match of these calculated sources is 

obtained using partial melting of F=3% for the Udachnaya 

kimberlite, 2% for the South African and worldwide 

average Group I kimberlite and 0.2% for the high-Mg 

HDFs.  The similarity in trace-element patterns between the 

calculated sources of Group I kimberlites and the 

Udachnaya high-Mg HDFs, combined with experimental 

studies that fit their major-element compositions (Dalton 

and Presnall, 1998a,b; Brey et al., 2008), strongly suggest 

that the two enriched melts can be formed by different 

degrees of melting of the same (or very similar) mantle 

source.  The 
87

Sr/
86

Sr ratios of the trapped high-Mg HDFs 

in four of the Udachnaya diamonds (Klein-BenDavid et al., 

2009b) vary between 0.7043 and 0.7053, well within the 

range of Group I kimberlites (0.7030–0.7055; Smith, 1983; 

Becker and le Roex, 2006 and references therein).  This 

correspondence in 
87

Sr/
86

Sr ratios provides further support 

for the suggested connection between Udachnaya high-Mg 

HDFs and Group I kimberlites. 

High-Mg HDFs trapped in diamonds from Kankan, Guinea 

have lower levels of alkalis and higher contents of LREE, 

Ba, Th and U than the Udachnaya high-Mg HDFs (Figure 1 

and 3).  This may reflect smaller degrees of melting 

compared to the Siberian HDFs and retention of phlogopite 

in their source rocks.  Similarly, the composition of Group 

II kimberlites argues for phlogopite in their source 

(Mitchell, 1995), and they represent lower degrees of 

melting than Group I kimberlites (Becker and le Roex, 

2006).  When calculating the source compositions, a good 

fit is obtained if the Kankan HDFs represent F=0.1% and 

are in equilibrium with a source that carries 0.3% 

phlogopite, while Group II kimberlites are produced by 1% 

melting in equilibrium with a source with 0.1% phlogopite 

(Figure 5b).  The lower amount of phlogopite in equilibrium 

with Group II kimberlite is consistent with their relatively 

higher degree of melting, their higher Al2O3 and SiO2 

compared to the Kankan high-Mg HDFs (Figure 2), and 

their higher K2O contents compared to Group I kimberlites 

(Mitchell, 1995; Becker and le Roex, 2006).  Here as well, 

farther support is provided by the high 
87

Sr/
86

Sr ratio 

(0.7079) in a single Kankan diamond, ON-KAN-386 

(Klein-BenDavid unpublished data), well outside the range 

of Group I kimberlites but within the range of Group II 

kimberlites (
87

Sr/
86

Sr=0.7072–0.7083; Smith et al., 1983; 

Becker and le Roex, 2006 and references therein). 
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Figure 5: Calculated source trace-element composition for high-Mg HDFs 

and kimberlites.  (a) Udachnaya high-Mg HDFs and Group I kimberlites 

and their calculated source patterns.  (b) Kankan high-Mg HDFs and 

average South African Group II kimberlites and their calculated sources. 

Mineral/carbonatitic-melt partition coefficients for olivine, orthopyroxene, 

clinopyroxene and garnet are from Dasgupta et al. (2009) and for 

phlogopite from Sweeney et al. (1995) and Schmidt et al. (1999). 

 

DIAMOND-FORMING HIGH-Mg HDFs AND 

KIMBERLITES AS METASOMATIC AGENTS  

It is now widely accepted that the sub-continental 

lithospheric mantle (SCLM) was strongly depleted through 

extensive extraction of mafic melts and that it was later 

refertilised by interaction with trace element-rich mantle-

derived melts and fluids (Erlank et al., 1987).  In spite of 

the diverse patterns of individual xenoliths, the average 

trace-element compositions of Archaean xenoliths from the 

Siberian, Canadian, North Atlantic and the Kaapvaal 

cratons are highly comparable (Schmidberger and Francis, 

2001; Gre'goire et al., 2003; Ionov et al., 2010; Simon et al., 

2007; Wittig et al., 2008).  The similarity is surprising, as 

the lithosphere in the various localities are separated both 
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physically and by the age of formation.  All these averages 

are different from the calculated average of basalt-hosted 

peridotite xenoliths from the post-Archaean SCLM 

(McDonough, 1990).   

The trace-element patterns of Udachnaya high-Mg 

carbonatitic HDFs and Group I kimberlites are similar in 

shape to the pattern of the average post-Archaean xenolith 

rather than to the average of the Archaean ones (Figure 6a).  

This is remarkable since the HDF-bearing diamonds and 

many kimberlites are found on Archaean cratons.  Figure 6b 

shows that the similarity in shape can be explained by a 

simple mixing model with addition of 2.5% of average 

Group I kimberlitic magma or 0.5% of the Udachnaya high-

Mg carbonatitic HDF to a depleted SCLM (modeled as 

MORB source or a more depleted one).  The question 

remains as to why the average post-Archaean, rather than 

the Archaean, xenoliths have trace element patterns that are 

similar to those of kimberlitic magmas or high-Mg 

carbonatitic HDFs.  

The average compositions of different regions of the SCLM 

may actually be referred to as the average enrichment, due 

to different metasomatic events that the SCLM experienced 

between the time of its depletion and its sampling as 

xenoliths.  Thus, the trace-element similarity of the average 

post-Archaean xenoliths may be the result of metasomatism 

mostly by kimberlites, high-Mg HDFs and other melts with 

similar patterns.  Some of the Archaean xenoliths have 

enriched trace-element patterns that are comparable to the 

average of the post-Archaean ones, suggesting that they as 

well were metasomatically influenced by such melts.  On 

the other hand, many Archaean xenoliths and their cratonic-

average compositions are characterized by different 

patterns, suggesting that fluids other than kimberlites or 

high-Mg HDFs were metasomaticaly enriching the 

Archaean SCLM.  Indeed, other diamond-forming HDFs 

with different compositions and patterns have been found 

(10IKC abstract No. 174).  Mixing of these HDFs with a 

depleted SCLM source explains some of the different trace-

element characteristics, as sampled by Archaean 

metasomatized xenoliths.  The similarity of the average 

pattern of xenoliths from various Archaean cratons suggests 

that long integration of interactions with different 

metasomatic agents leave broadly similar, large-scale, 

enriched litospheric reservoirs. 

 

CONCLUSIONS  

The similar trace-element patterns of kimberlites and HDFs 

strongly support a common source for both.  The patterns 

and element ratios also suggest that the Udachnaya HDFs 

are closer to Group I kimberlite, while the Kankan HDFs 

are associated with Group II.  These associations are 

reflected in their respective Sr-isotope compositions.  The 

close relation between HDFs that were trapped at depth and 

kimberlites sampled at the surface, places constraints on the 

chemical composition of kimberlitic magmas at depth and 

indicates that their incompatible-element compositions did 

not change much en route. 

The similarity of the trace-element patterns of both HDFs 

and kimberlites to that of the post-Archaean SCLM may 

reflect the interaction of such melts with the lithospheric 

keel, its melting to produce HDF and/or kimberlites or 

melting of deeper sources that led to formation of HDFs and 

kimberlite and to widespread metasomatism of the SCLM. 
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Figure 6: (a) Trace-element patterns of the Udachnaya high-Mg HDFs, 

worldwide average Group I kimberlites (from Figure 3) and the average 

composition of the Archaean and post Archaean SCLM.  (b) The enriched 

post-Archaean SCLM is closely fitted by mixing either kimberlitic melt or 

high-Mg HDF with depleted mantle source, represented by the average 

depleted MORB mantle (DMM) composition (other, more depleted 

composition would yield similar results). 
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