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Introduction and geological setting 

Mantle xenoliths and diamonds from the 538 Ma 

Murowa and Sese kimberlites in Zimbabwe (Smith et 

al., 2004) have been used to characterise the nature of 

the lithosphere beneath the southern Zimbabwe Craton. 

These kimberlites lie near the southern edge of the 

Craton, intruding 2.6 Ga granite batholiths emplaced 

into the ~ 3.0 Ga Buhwa Greenstone Belt 10-20 km 

north of the boundary of the Northern Marginal Zone 

of the late Archean Limpopo Mobile Belt (Fig. 1).  The 

greenstones are believed to rest on non-outcropping 

~3.5 Ga gneissose Tokwe Segment basement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Geological setting of the Murowa and Sese 

kimberlites (modified from Kamber et al., 2004). 

 

Mantle xenoliths 

Mantle xenoliths identified are entirely peridotitic with 

dunite predominating over harzburgite and lherzolite.  

Textures are coarse granular to porphyroclastic.  Some 

dunites are megacrystic, formed of single crystals of 

olivine, containing occasional subcalcic chrome pyrope 

inclusions.  Accessory aluminous Cr-spinel is present 

in vermiform or cuspate shapes suggestive of re-

equilibration (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Sample GP14 (ordinary light): Porphyroclastic, 

coarse granular, spinel lherzolite from Murowa K1. 

Pale clinopyroxene and orthopyroxene occur patchily 

in clots, associated with intergranular, vermiform, 

chrome spinel (Cr2O3~40%). 

 

Olivines in the dunites and harzburgites have mg 

values of 0.90-0.95, spanning the average for Kaapvaal 

craton peridotites (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Olivine mg for Murowa/Sese peridotites 
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Diamonds 
The diamonds are of octahedral, transitional and 

dodecahedral shape, in order of abundance. They are 

mainly white, pale brown and pale yellow in colour. 

Most of the crystals have simple octahedral internal 

growth zonation and blue photoluminescence colour. 

They contain moderate amounts of nitrogen (60-500 

ppm) with medium degree of aggregation (40-60% of 

1aB type). 

 

Diamond inclusions are almost entirely peridotitic, 

with high Cr magnesio-chromite and olivine (fo 0.91-

0.94) predominating over enstatite (mg 0.93-0.96), 

subcalcic chrome pyrope, Ni-rich sulphide and 

yimengite. Eclogitic omphacites were recorded in two 

Murowa diamonds. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Chondrite-normalised REE patterns for garnets 

from Murowa peridotite xenoliths and Murowa and 

Sese diamond inclusions. 

 

All of the diamond inclusions and two of the peridotite 

xenoliths (AB1 and AB3) have pyropes with sinusoidal 

REE patterns depleted in HREE that are typically 

associated with dunites and harzburgites world wide 

(Fig. 4).  This includes the Ca-rich pyrope from 

diamond Murowa_133.  Two dunite xenoliths (AB12 

and AB2) have pyrope with lherzolitic REE patterns, 

perhaps due to re-fertilisation. 

 

Kimberlite Concentrate Minerals 
Concentrate minerals from the kimberlite are 

dominated by magnesio-chromite similar in chemistry 

to diamond inclusion chromites (Fig. 5), and by 

chrome pyrope (30% lherzolitic “G9”, 70% subcalcic 

harzburgitic “G10”) (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  MgO-Cr2O3 plot for chromites from Murowa 

& Sese peridotites, diamond inclusions & concentrates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Cr2O3-CaO plot for garnets from Murowa & 

Sese peridotites, diamond inclusions and concentrates. 

 

Peridotite xenolith chemistry 
As expected from their highly depleted mineral 

chemistry, the Murowa peridotites have bulk 

compositions that are depleted in magmaphile 

elements.  Their compositions are amongst the most 

depleted of any cratonic peridotites, with Ca and Al 

contents matched only by the most depleted North 

Atlantic Craton peridotites (Wittig et al., this volume).  

Mg/Si ratios are very high, in keeping with the olivine-

rich, orthopyroxene-poor nature of the Murowa 

peridotites and as such this suite is considerably 

different from typical low Mg/Si peridotites that 

characterise the Kaapvaal cratonic lithosphere to the 

South. 

The overall impression is therefore of an exceptionally 

depleted lithospheric mantle beneath the southern 

Zimbabwe Craton. 

 

Thermobarometry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  Thermobarometry/geotherm plot for 

Murowa/Sese peridotites and diamond inclusions 

 

Pyroxene, garnet and spinel thermobarometry suggests 

an ambient 40mWm-2 geotherm, with lherzolites 

coming from shallower depths than dunite-harzburgite 

assemblages which extend down to 210 km. 

Xenolith pyroxenes re-equilibrated at low P during a 

metasomatic alteration event, probably during 
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kimberlite entrainment.  The diamond inclusions 

typically fall within the temperature range 1030-

1250
o
C, with median values for garnet and chromite of 

~1100
o
C. Diamonds seem to be common at top of the 

mantle section within the diamond stability field rather 

than towards the lithosphere base. 

 

Dating of peridotites and diamonds 
Whole rock peridotite Re-Os isotope analyses give 

initial γOs values of between -8.5 and -13, similar also 

to Kaapvaal Craton peridotites. Typical minimum TRD 

ages, of 2.7 to 2.8 Ga. are slightly younger in age than 

the basement greenstone formation but similar to the 

prominent mode in Re-depletion ages seen in the 

Kaapvaal craton.  In contrast, the average Re-Os model 

age is 3.2 Ga.  
 

 

 

 

 

 

 

 

 

 

Fig. 9. Re-Os model ages for Murowa peridotite 

xenoliths 

 

Whole rock Os data gathered so far suggests a model 

whereby thick lithospheric mantle was stabilised 

during the early stages of crustal development by 

shallow peridotite melting required for formation of 

residues with sufficiently high Cr/Al to stabilise 

chromite which then transforms to low Ca, high Cr 

garnet (e.g., Canil, 1992; Stachel et al., 1998).  The 

shallow melting environment is strongly supported by 

very low whole-rock Yb concentrations and high 

Lun/Ybn ratios e.g. Wittig et al. (in revision).  

A high Ni, high Os (6.5 ppm Os) sulphide inclusion in 

diamond of probable peridotitic paragenesis has an 

initial γOs value (at 533Ma) of -16.1, considerably less 

radiogenic than the bulk rock peridotites.  This 

sulphide yields a TRD model age of 3.3 Ga and a Re-

Os age of 3.5 Ga, confirming the meso-Archean age for 

the lithosphere in this region suggested by the Re-Os 

model ages for the whole rocks.  With only a single 

sample, we cannot accurately estimate the range of 

diamond formation ages, but the single model age is 

consistent with the meso-Archean lithosphere 

formation age indicated by the whole rock data. The 

moderate N aggregation of the diamonds at 

temperatures of ~1100
o
C requires a long mantle 

residence time, supporting an Archean age of diamond 

formation. 

 

Comparison with the lithospheric mantle beneath 

the Limpopo Mobile Belt 

Literature review shows that mantle xenoliths, 

diamonds and concentrate macrocrysts from the 

Venetia, River Ranch, Mwenezi and Chingwise pipes 

which intrude the Limpopo Mobile Belt also show 

strongly depleted peridotitic mantle signatures.  

Seismic velocity imagery was interpreted by James et 

al. (2001) to indicate the presence of a deep 

lithospheric mantle keel beneath the Limpopo Mobile 

Belt today.  The Mobile Belt seems therefore to be a 

product of thin skin crustal tectonics with the 

underlying lithospheric mantle linked to that of the 

southern Zimbabwe Craton and unaffected by these 

overlying crustal events.  We interpret the highly 

depleted dunite-harzburgite assemblage as a product of 

shallow melting followed by subduction and accretion 

beneath the Zimbabwean cratonic crust of the Archean 

Tokwe Block. 

 

 

 

 

 

 

 

 

Fig. 10 Illustrative cross section from Limpopo Mobile 

Belt to southern Zimbabwe Craton (modified from 

Roering et al., 1992). 
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