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The Archaean lithospheric mantle of the Kaapvaal 
Craton is residual after extensive melt removal but in 
Fig. 1 the silica content is above the oceanic melting 
trend and cannot by explained by melting models alone 
(e.g. Boyd, 1989; Walter, 1998). In addition, the 
peridotites are often enriched in incompatible trace 
elements (see recent discussion in Simon et al. 2007). 
The high silica content, manifested as high modal 
orthopyroxene (Opx), requires a silica enrichment 
process. However, the timing and nature of the silica 
enrichment process is not well understood, partly 
because interpreting the temporal evolution of mantle 
xenoliths is complicated by more recent metasomatism 
and melt interaction during transport by kimberlite. In 
an effort to constrain the Opx addition process, we 
report a combined petrology and in-situ major and 
trace element (SIMS) and mineral Nd-Hf-Os isotope 
study of extremely silica-rich and non-deformed 
xenoliths from Kimberley, South Africa. 

Fig. 1 Mg# in Ol - WR Mg/Si wt% (Boyd, 1989). The 
studied samples plot above the ‘oceanic melting trend’. Black 
spot: primitive mantle. White star and black lines: Kaapvaal 
average and compositional range (Pearson et al., 2003). 

 
Extreme Si-enrichment is manifested in two forms: I) 
Opx-rich clots and veins (5-20 cm) that have garnet 
(Gnt) exsolution; average modal content of the Opx 
clots: 75% Opx, 15% Gnt, 10 % olivine (Fig. 2). II) 
Gnt-rich clots up to 5 cm; average modal content of the 
Gnt clots: 80% Gnt, 15% Opx, 5 % Ol (Fig. 3). 

Fig. 2 Opx clot characterized by high Opx content compared 
to the harzburgite; sample AT 1040. 
 

ig. 3 Gnt clots in depleted harzburgite; sample AT 1020.  
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clots are extremely depleted in FeO and hence have a 
high Mg# (Ol Mg#: 0.93). Furthermore, the samples 
are also extremely depleted in incompatible elements, 
indicating large amounts of melt extraction. The 
samples of this study are more Si-rich than previously 
reported for Kaapvaal peridotite whole rock 
compositions; SiO2

 is up to 55 wt% (Fig. 4) and 
represent among the most extremely SiO2 enriched 
peridotites yet recorded. The Opx clots are enriched in 
SiO2, Al2O3, K2O, CaO, Cr2O3, V, and lower in FeO, 
MgO and NiO. The Grt clots have elevated Al2O3, 
CaO, MnO, K2O and V contents. 
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Fig. 4. SiO2 vs. FeO diagram. Samples have significantly 
higher SiO2 and lower FeO contents than can be explained by 
melting at 3 GPa to 7 (Walter, 1998).  
 
Metasomatism associated with clot formation does not 
appear to have affected harzburgite HREE contents. 
Therefore, HREE can be used to study melt depletion. 
Reconstructed harzburgite-lherzolite whole rock HREE 
contents vary by more than an order of magnitude and 
are low (YbN = 0.02-0.4; fig. 5). Coupled with the 
positive Er-Yb slopes of some samples, these low 
HREE contents suggest that the harzburgite protoliths 
were formed at least partially by melt depletion in the 
spinel-stability field. The current presence of Gnt 
implies that following initial melting, the harzburgites 
were tectonically transported to a deeper level before 
kimberlite eruption. The depleted character of the 
major elements requires high degrees of melting (40-
50%). The HREE content can be explained by ≤ 20% 
melting in the spinel-stability field. Hence melting 
must have been polybaric and was initiated in the Grt 
stability field.  
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Fig. 5 – Reconstructed WR-REE concentrations. For legend 

ome of the Si-enriched samples appear recently 

 
d diagram indicating disequilibrium between 

inerals. Black circle: kimberlitic values (Nowell, 2004). 

e 
 

I: kimberlite I, KII: kimberlite II, TK: transitional 

enriched in MREE and 
REE. The resulting whole rock REE pattern is “S” 

see Fig. 1. 
 
S
metasomatised (AT 1045). This process is manifested 
by clinopyroxene (Cpx) addition and is associated with 
relative LREE enrichment; LaN of a lherzolite is 10 
times higher compared to harzburgite AT 1040 (Fig. 

5). Neodymium mineral (Gnt-Opx-Cpx) isochron ages 
of the Cpx-metasomatised rocks (AT 1045; Fig. 6) are 
within error of the age of kimberlite eruption (~90 Ma) 
indicating syn-eruption metasomatism. Mineral εHf(t) 
and εNd(t) values are close to kimberlitic values (AT 
1045 Fig. 7) indicating that Cpx formation was related 
to kimberlite magmatic activity. This led to extensive 
chemical equilibration within the metasomatised 
peridotites. 
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Fig. 7 εHf vs. εNd diagram. The rocks of this study ar
plotted together with fields for MORB, OIB and kimberlites
(K
kimberlite; Nowell, 2004). 
 
Non Cpx-bearing Opx and Gnt-clots have depleted 
HREE, but are relatively 
L
shaped with a maximum at Sm-Nd (Fig. 5). The 
theoretical trace element concentrations of the agent in 
equilibrium with Gnt and Opx are calculated from trace 
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element concentrations of the minerals and distribution 
coefficient to assess the nature of the modifying agent. 
Melts in equilibrium with Opx have trace elements 
contents similar to kimberlite, indicating melt-rock 
interaction. Garnet appear relatively unaffected by 
kimberlite interaction and a liquid in equilibrium with 
gnt may represent the trace element composition of the 
Si-enrichment agent (Fig. 8). The low HREE contents 
and strong fractionation are not indicative of a melt, 
but rather of a fluid (Stachel and Harris, 1997); in 
agreement with suggestion by Simon (2004) and Bell 
et al. (2005). High precision HFSE studies are 
currently underway to substantiate these findings. 

 

Fig. 8 Trace element concentrations of a metasomatic agent
in equilibrium with Gnt. 
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The Gnt in the Opx-clots (AT 1039, AT 1040) have 
low Lu/Hf (with low t

er
(εHf(t) +10). The Gnt-clots, as well as the Opx-clots, 
have low Sm/Nd and Nd isotope ratios (εNd -10). In 
agreement with the trace element data, Opx of the Gnt- 
and Opx clots have a kimberlite Nd-Hf isotope signal; 
therefore Opx-Gnt mineral isochrons do not provide 
geological significant age constraints on the 
enrichment process (Fig. 6). Gnt Hf and Nd model ages 
indicate that the Opx clots formed >2 Ga, while the Gnt 
clots have model ages of >1 Ga. This implies that Opx 
and Gnt clots were not formed simultaneously and two 
enrichment events are required. An ancient model age 
of Opx clot AT 1039 is confirmed by a Re depletion 
age of 2.8±0.1 Ga. However, Re depletion age of the 
Gnt clot is younger than the Nd-Hf model ages (670± 
100 Ma). These data suggest that the melt-fluid-rock 
interaction responsible for the Gnt clot led to a mixture 
of age information. However, the combined Hf-Nd-Os 
data confirm that the metasomatism that formed the 
Gnt clots is significantly younger (>1 Ga) than that 
responsible for the Opx clots. 

The combined trace element and isotopic data are 
used to formulate a model for the nature and timing of 
the silica addition to the Kaapv

s model involves extensive melt depletion in the 
Archaean (I). The mantle was enriched in SiO2 at >2 
Ga (II); modification is probably related to interaction
with fluids that were released during subduction of the 
Kimberley block beneath the Witwatersrand block. A 
second metasomatic enrichment formed Gnt clots; 
however, the tectono-magmatic event responsible for 

kimberlite eruption brought the xenoliths to the 
surface. Before or during entrainment, interaction with 
the kimberlitic magmatism caused widespread 
metasomatism and the introduction of Cpx (IV). 
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