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The Premier kimberlite is located in the Central Terrain 
of the Archaean Kaapvaal Craton (de Wit et al., 1992), 
with a preferred emplacement age of 1180 Ma (Allsopp 
et al., 1989; Richardson et al., 1993). Underground 
mining operations reveal that the kimberlite, which is 
cut by a 1100 Ma gabbroic sill, penetrates a norite 
phase of the Bushveld Complex. The Bushveld 
Complex is among the largest layered intrusions 
known, comprising a sequence of basic rocks 7-9 km 
thick, with an areal extent of 66 000 km2 (the 
Rustenburg Layered Suite) and subsequent granites. 
The Premier diamond mine is renowned as the source 
of many of the world’s largest gem diamonds, e.g. the 
Cullinan and Centenary diamonds. The locality has 
been the subject of xenolith studies (e.g. Danchin, 
1979; Boyd and Mertzman 1987; Boyd, 1989; Boyd et 
al., 1993) as well as minerals occurring as inclusions in 
diamond (Gurney et al., 1985). 
 
Mantle-derived xenoliths present include harzburgites 
and lherzolites (Danchin, 1979). Premier garnet 
lherzolites can be clearly subdivided into coarse and 
deformed varieties on the basis of differences in 
mineral composition and texture. Deformed lherzolites 
may originate from greater depths than those with 
coarse textures which are in turn more depleted in Fe, 
Al, Ca and Ti relative to the deformed rocks. 
Constituent minerals of the deformed xenoliths are 
extremely titaniferous and clinopyroxenes contain 
significant potassium. Premier Mine garnet 
harzburgites are also progressively deformed and less 
depleted with respect to Fe/Mg with increasing depth 
of origin (Danchin, 1979). 
 
A prominent upper mantle seismic velocity anomaly 
within the Kaapvaal craton is associated with the 
Bushveld layered intrusion (Shirey et al., 2002). In this 
region, lower than average seismic P-wave velocity 
appear to extend into the mantle beneath the layered 
intrusion itself, and also well to the west. Diamond 
populations from kimberlites located within this region 
of mantle lithosphere with slower P-wave velocity 
(including the Premier diamond mine) are 
characterised by a greater proportion of eclogitic versus 

peridotitic inclusions, a greater incidence of younger 
Sm-Nd ages of silicate inclusions, a greater proportion 
of diamonds with lighter C isotopic composition, and a 
lower percentage of low-nitrogen diamonds (Shirey et 
al., 2002). 
 
The present contribution serves to document evidence 
found for lithospheric depletion and enrichment in the 
mantle below the Premier diamond mine through the 
analysis of mineral and bulk rock compositional trends 
in garnet-bearing peridotite xenoliths. Trace element 
contents of garnets in the xenolith suite have been 
analysed, utilising laser ablation inductively coupled 
plasma mass spectrometry. The xenolith suite 
comprises of lherzolites and harzburgites (including 
subcalcic varieties) which have been previously studied 
for their major element mineral chemistry and xenolith 
bulk composition (Fig.1, Danchin, 1979). 
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Fig. 1 CaO-Cr2O3 chemistry of garnets occurring in 
xenoliths from the Premier kimberlite, and which were 
analysed in the present study. The lherzolite region 
(outlined area) is after Sobolev et al (1973). Data for 
'Other Samples' refer to a worldwide database. 
 
 
Elevated Y and Zr contents of the garnets from coarse 
and deformed lherzolites, as well as deformed calcic 
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harzburgites are indicative of extensive high-
temperature melt-related metasomatism (Fig. 2). In 
contrast, coarse and deformed subcalcic harzburgites 
typically have lower Y and Zr in garnet, or show 
evidence of lower-temperature, fluid dominated 
metasomatism (elevated Zr only; Fig. 2). Garnet rare 
earth element patterns range from sinuous in e.g. the 
subcalcic harzburgite xenoliths to normal in e.g. the 
deformed lherzolites (Fig. 3). Individual garnets from 
some of the xenoliths show compositional 
heterogeneity corresponding to core-rim zonation 
patterns described previously for garnets in peridotite 
xenoliths from kimberlites (Fig. 4). The change in the 
shape of the rare earth element patterns from sinuous to 
humped to normal correlates with increasing Y content 
in the garnets. 
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Fig. 2 Zr and Y abundances of garnets occurring in 
xenoliths from the Premier mine. Fields and 
metasomatic trends after Griffin et al (1999). 
 
 
Similar levels of depletion as measured by bulk 
xenolith Al2O3 content are not only evident in 
subcalcic and calcic harzburgite xenolith varieties, but 
also in a number of the lherzolites irrespective of 
texture (i.e. coarse vs deformed; Fig. 5) suggesting that 
all probably derive from the same (or similar) depleted 
protolith(s) but with varying levels of metasomatic 
overprint. 
 
The observed trace element contents and rare earth 
element patterns in garnets from many of the xenoliths 
record evidence for substantial overprinting of the 
original highly depleted substrate, through melt-related 
metasomatism. Rare earth element patterns changed 
during metasomatism from sinuous to humped and 
finally to that typical of magmatic garnets, or garnets 
showing a low degree of depletion (Burgess and Hart, 
2004; Stachel et al., 1997). This is consistent with the 
conclusion reached by Griffin et al (2003), based on 
compositional trends observed in peridotitic garnet 
xenocrysts from Premier. It is therefore considered 
likely that subcratonic lithosphere below Premier 
originally consisted solely of highly depleted 
harzburgite residues. 
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Fig. 3 Chondrite-normalised rare earth element patterns 
of garnets occurring in peridotite xenoliths from the 
Premier mine. 
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Fig. 4 Rare earth element heterogeneity in individual 
garnets occurring in peridotite xenoliths from the 
Premier mine. 
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Fig. 5 Cr2O3 content for garnets occurring in xenoliths 
from the Premier mine, plotted against the Al2O3 
content of the xenolith. Data for 'Other Samples' refer 
to a worldwide database. 
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