
AREA SELECTION FOR DIAMOND EXPLORATION USING DEEP-PROBING 
ELECTROMAGNETIC SURVEYING 

 
 

Alan G. Jones and James A. Craven 
Geological Survey of Canada, 615 Booth St., Ottawa, Ontario, Canada K4M 1E3 (ajones@nrcan.gc.ca) 

 

INTRODUCTION THICK LITHOSPHERE 

Previously proposed methods of area selection for dia-
mond-prospective regions have predominantly relied on 
till geochemistry (Griffin and Ryan, 1995; Gurney and 
Zweistra, 1995; Jennings, 1995), airborne geophysics 
(Macnae, 1995), and/or an appraisal of tectonic setting 
(Helmstaedt and Gurney, 1995). Herein we suggest that 
a novel deep-probing geophysical technique - electro-
magnetic studies using the natural-source magnetotellu-
ric (MT) method (Jones, 1998, 1999) - can contribute to 
such an activity. 

Diamonds only exist in thick cold lithosphere at depths 
where the geotherm lies below the graphite-diamond 
stability field. In the absence of any interconnected 
conducting material, the sub-continental lithospheric 
mantle (SCLM) is highly resistive. Laboratory studies 
of the resistivity variation with temperature of mantle 
materials, olivine, orthopyroxene and clinopyroxene, 
show that resistivity values of many hundreds to tens of 
thousands of ohm-metres are to be expected (Xu et al., 
2000). This variation is shown in Figure 1 for those 
three minerals, calculated from the formulae in Xu et al. 
(2000). Using appropriate mixing relationships, it is 
possible to determine the resistivity of the mantle for 
any given mineral modal composition (Ledo and Jones, 
2003).  

 
Essentially, diamondiferous regions must have: 

1. thick lithosphere 
2. old lithosphere,  

and, what is not as appreciably discussed in the litera-
ture, 

3. lithosphere that contains high concentrations 
of carbon. 

 
As we will discuss and demonstrate in our paper, deep-
probing MT studies are able to address all three of 
these.  The first and the third of these can be done vir-
tually independently by MT, but for the second the ge-
ometries produced from modelling the MT observations 
must be interpreted with appropriate interaction with 
geologists, geochemists and other geophysicists. 

 

 
M
th
(L
el
is
S
fi

10 100 1000 10000 100000 1000000
800

900

1000

1100

1200

1300

1400

1500

Te
m

pe
ra

tu
re

 (C
)

Resistivity (ohm.m)

ol
(2.69,1.62)

opx
(3.72,1.80)

cpx
(3.25,1.87)

0.1 1 10 100 1000
Resistivity (ohm.m)

800

900

1000

1100

1200

Te
m

pe
ra

tu
re

 (C
)

Electronic conduction
(solid state eqn.)

Ionic conduction
(mixing eqn.)

50 CO

1.5 orders 
of magnitude

Transition
Zone

Figure 1: Resistivity-temperature variation of oli-
vine, opx and cpx (taken from Xu et al., 2000). 
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Figure 2: Resistivity-temperature variation of py-
roxene granulite during heating and the onset of
partial melt (derived from the data in Schilling et
al., 1997, and Partzsch et al., 2000). 
T can determine the thickness of the lithosphere, i.e., 
e depth to the lithosphere-asthenosphere boundary 
AB), due to the two orders of magnitude increase in 
ectrical conductivity at the onset of partial melt. This 
 shown in Figure 2 below derived from the data in 
chilling et al. (1997) and Partzsch et al. (2000). The 
gure shows the results of heating experiments on a 

t 1 



sample of pyroxene granulite. At low temperatures 
(<1050 ºC), the material conducts electric currents by 
the flow of electrons, and this can be described be de-
scribed by the solid-state Arrhenius equation. At high 
temperatures (>1100 ºC) ionic conduction becomes 
dominant and can be described by an appropriate mix-
ing law.  
 
Between these two, in the transition zone where partial 
melt is very low (<2%), both mechanisms are important 
and resistivity decreases by over 1.5 orders of magni-
tudes within 50 ºC. Quenching studies show that the 
melt becomes interconnected, which is critical for re-
ducing electrical resistivity, at very low partial melt 
fractions. Minarik and Watson (1995) and Drury and 
Fitz Gerald (1996) both demonstrate that interconnec-
tivity can be achieved with partials melts below 0.1%. 
 
It should be noted that these laboratory experiments are 
very difficult to perform; the results of Schilling et al. 
(1997) and Partzsch et al. (2000) required holding the 
temperature constant for 200 hours to obtain a stable 
result. 
 
Such high sensitivity to the onset of partial melt, with 
resistivity decreasing by over 1.5 orders of magnitude 
over a temperature range of less than 50 ºC, means that 
precise MT data have the highest potential precision of 
any geophysical method to the depth to the LAB. This 
boundary is generally taken to have a temperature of 
~1350 ºC, so the resistivity is expected to decrease from 
some hundreds of ohm-metres (Figure 1) to ten ohm-
metres (Figure 2) over about 25 km in depth (which is 
equivalent to a temperature increase of around 50 ºC). 
 
Thus, the MT method can detect whether the LAB ex-
ceeds the graphite-diamond (G-D) stability field, or not. 
A cartoon to illustrate this sensitivity is given in Figure 
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xpected temperatures at 80-100 km depths are 700-750 

That diamonds occur primar
the well-known Clifford’s R
ometries of structures imaged by EM studies within the 
sub-continental lithospheric mantle aid in the develop-
ment of a model for the tectonic history of the craton, 
which relates to its age. This has been demonstrated for 
both the Slave craton and for the western part of the 
Superior craton. 
 
Jones et al. (2001
o
a region of anomalously low electrical resistivity, 
named the Central Slave Mantle Conductor (CSMC). 
The top of the body lies at a depth of ~80-100 km. The 
model of the MT data acquired along the winter road 
from Tibbit Lake to the northern part of Contwoyto 
Lake is shown below in Figure 4.  
 

Based on xenolith studies (Kopylo
e
ºC, which, by reference to Figure 1, suggests an ambi-
ent resistivity of the order of >30,000 Ω.m is to be ex-
pected, and is as seen in the southern Slave (Figure 4). 
In contrast, the CSMC has a resistivity <15 Ω.m (Jones 
et al., 2003). The modelled three-dimensional geometry 
of this body, with a NE-SW strike and a NW dip, was 
one of the key geometric factors used by Davis et al. 
(2003) in their argument for proposing that the SCLM 
beneath the Slave today is not the original SCLM 
formed in the Mesoarchean. Davis et al. (2003) postu-
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Figure 4: Resistivity model from the southern Slave,
through Lac de Gras, to the northern Slave along
the winter road (taken from Jones et al., 2003) 

Figure 3: Cartoon to show sensitivity of MT to LAB
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late that the Slave’s SCLM is the consequence of sub-
cretion of exotic lithosphere during an orogenesis at 
2630-2590 Ma postdating Slave crustal formation at 
2690 Ma. 
 
In the western part of the Superior craton, Craven et al. 

001) have discovered a conducting body within the 
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SCLM that displays the same properties as the CSMC. 
The western Superior conductor lies within the North 
Caribou Terrane (NCT), a Mesoarchean terrane within 
the mélange of predominantly Neoarchean terranes that 
form that part of the Superior craton. It is bounded on 
either side by regions displaying high electrical anisot-
ropy, or two-dimensionality, with electrical strike direc-
tions parallel to the major syn- and post-Kenoran zones 
of transpression on either side of the NCT. A prelimi-
nary model of the electrical structure in the northwest-
ern Superior Province showing the 2-D zone south of 
the NCT is shown in Figure 5. 
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These are discussed in Jones et al. (2001). We interpret 
both the Slave and Superior conductors as evidence for 
interconnected graphite, and, taken together with inde-
pendent estimates of upper mantle oxygen fugacities 
within two log units of the iron-wüstite buffer, suggest 
that partial melting and formation of the cratonic root 
are related to redox melting during the Meso- and 
Neoarchean times. Above the graphite-diamond (G-D) 
stability field an interconnected graphite phase de-
creases electrical resistivity by two or more orders of 
magnitude over that predicted from laboratory studies 

and petrophysical modelling for an olivine or pyroxene 
mineralogy dominant upper mantle. Below the G-D 
field, carbon exists in the form of diamond, and is 
highly resistive. 

CONCLUSIO
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diferous provinces. Of available methods, magnetotel-
lurics and teleseismics are the two methods available to 
“look” into the mantle, and they compliment each other 
well.  They are, in fact, the only geophysical methods 
with true depth resolving capability of material property 
variations – the other methods use inference rather than 
direct detection. To date, teleseismics has been used to 
derive the geometries of Archean sub-cratonic litho-
spheric mantles. Herein we propose that deep-probing 
regional-scale MT surveys offer an attractive addi-
tional, and on occasion alternate, cost-effective means 
for rapid area selection for diamond-prospective re-
gions. MT surveys have the advantages that the tech-
nique is sensitive to electronic conduction in carbon and 
that the data acquisition generally requires only one 
month per site, rather than the one to two years that is 
required for teleseismic surveys.  
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Figure 5: Preliminary resistivity model from the west-
uperior Province. 
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