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INTRODUCTION 

The placer deposits along the Namibian coast have been 

seen in the clinopyroxenes, are apparent in Fig. 2: (i) 
high-Ca (low-Na) group with a range in Mg-values and 
corresponding orthopyroxenes (low Ca and Na), and (ii) 
low-Ca (high-Na) group with corresponding high-Ca 
and -Na orthopyroxenes which shows a range extending mined for almost a century and have consistently 

produced a high proportion of gem quality diamonds. 
Little is known, however, about their inclusion 
parageneses and their primary origin. We have now 
undertaken a detailed study on 106 inclusion-bearing 
diamonds from Namibia from which 49 belong to the 
“normal” peridotitic and 43 to the “normal” eclogitic 
suites. One other contains a websterite-eclogite 
inclusion. The remaining 13 belong to an unusual and 
hitherto unknown suite (“undetermined suite”) of 
lamellar intergrowths of pyroxenes associated with 
minerals normally observed in mantle xenoliths with a 
special type of metasomatism. Amongst these are 
carbonates, phlogopite and a Ba-titanate. In this 
presentation we concentrate on these unusual diamonds 
and their inclusions. 

MINERALOGY 

The characteristic feature of diamonds of the 
“undetermined suite” is the occurrence of pyroxene 
associations with unusual textures (Figure 1). 
Clinopyroxene and orthopyroxene intergrown as 
lamellae or in patches were observed in nine diamonds. 
In six of these diamonds the pyroxenes are associated 
with other minerals: a SiO2 phase (two diamonds), 
MgCO3 (one diamond), CaCO3 (one diamond, together 
with SiO2), phlogopite (one diamond) and an unusual 
Ti-rich phase (one diamond, together with a Ca- and 
Cr-rich garnet). The complete absence of olivine and of 
garnet (except for one) is conspicuous. The former must 
mean that SiO2-oversaturation is a common feature of 
the whole suite, the latter is due to the Al-poor and Cr-
rich nature of the suite (see below). 

MINERAL CHEMISTRY 

The lamellar intergrowths of ortho- and clinopyroxene 
shown in Fig. 1 are interpreted as exsolution lamellae 
that originated from homogeneous inclusions of low-Ca 
clinopyroxene. Two compositional trends, most clearly  
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Figure 1: BSE images of typical inclusions of the 
“undetermined suite”. The main feature is lamellar 
intergrowth of clinopyroxene (cpx) and orthopyroxene 
(opx) interpreted as exsolution of opx from a former low-
Ca cpx. Shown here are only inclusions containing 
additional phases such as a “titanate” (top), SiO2, probably 
coesite (middle) and SiO2 plus Ca-carbonate, probably 
aragonite (bottom). 
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to even lower Mg-values (see also Figs 3 and 4).  
The worldwide data base for orthopyroxene inclusions 
shows the vast majority to lie in a field of Mg-numbers 

garnet plotted in the pyroxene quadrilateral. Coexisting 
phases are connected by tie lines. Also shown are pyroxene 
solvi at 1100 °C and 1300 °C calculated for 50 kbar from 
Brey and Köhler (1990)  
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ranging from 91 to 97 with Cr2O3, NiO and Na2O 
contents between 0.02-0.75, 0.08-0.16 and ≤ 0.02- 0.08 
wt% respectively. “Normal” peridotitic orthopyroxenes 
from Namibian placer deposits fully overlap with this 
range. Some orthopyroxenes of the “undetermined-
suite” overlap with the lower tail-end of the worldwide 
database in Mg-values. Others have significantly higher 
Cr2O3, NiO and Na2O contents, (Fig. 3). These 
geochemical features are mirrored in the
clinopyroxenes (Fig. 4) with some very high Cr 
contents correlating with Na2O in the high-Na2O group, 
with high overall NiO contents and high K2O. 
Particularly high concentrations of Cr (at high Na) are 
observed in a clinopyroxene with an Mg-number of 85. 
Clinopyroxenes with higher Cr at similar Na contents 
have so far only been reported from two other 
diamonds worldwide (Arkhangelsk, Sobolev et al. 
1997c; Dokolwayo, Daniels and Gurney 1999) and 

 

from a metasomatised peridotite xenolith from the 
Siberian Craton (Sobolev et al. 1997b). 
 
In one diamond, a green garnet and a “titanate” 
inclusion phase coexist with an opx-cpx intergrowth. 
Green lherzolitic garnets owe their colour to significant 
contents of both the knorringite and uvarovite 
component and are rare in diamonds and xenoliths 
(Schulze 1987). This garnet is distinct from other 
Namibian lherzolitic garnets because of a low Mg-
number and high Cr2O3 and TiO2 contents. The 
composition of the very small Cr-rich “titanate” is not 
well determined because analytical overlap with the 
surrounding pyroxenes could not be avoided. The 

Figure 2: Compositions of pyroxene intergrowths and one 
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Figure 3: Compositional features of orthopyroxenes from 
the “undetermined suite” (stars) shown in comparison to a 
database for inclusions in diamonds from worldwide 
sources (for references see Stachel et al. 2000) and 
orthopyroxenes from the peridotitc suite from Namibia 
(open triangles, Stachel et al., in prep.)  
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titanate seems to correspond to Cr-rich lindsleyite, the 
barium end-member of the LIMA series (Haggerty et 
al. 1983). Its stability field extends across the graphite-
diamond transition (Foley et al. 1994) and its 
occurrence is indicative of strongly metasomatised 
mantle domains (Haggerty et al. 1983). Lindsleyite was 
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previously reported as an inclusion in diamond from the 
Siberian Craton (Sobolev et al. 1997a). 
Magnesite and aragonite are also stable within the 
diamond stability field (Wyllie and Huang 1976; Brey 
et al. 1983). The higher Mg-number of magnesite 
compared to those of coexisting pyroxenes is due to the 
preferential partitioning of Mg over Fe in carbonates as 
compared to silicates (Brey and Green 1976; Wallace 
and Green 1988). Magnesite was previously reported as 
an inclusion in diamond by Wang et al. (1996) and 
assumed to be of primary origin and CaCO3 was 
recorded in several diamonds (McDade and Harris 1999 
–with olivine Fo95; Sobolev et al. 1997a –intergrown 
with phlogopite of eclogitic paragenesis). 

GEOTHERMOBAROMETRY 

Equilibration temperatures of coexisting clinopyroxene 
and orthopyroxene were estimated with the two-
pyroxene thermometer (TBKN) of Brey and Köhler 
(1990). A pressure of 50 kbar was assumed and results 
are shown in Fig. 5. Equilibration temperatures fall into 
two distinct groups, with the high-Na pyroxene 
intergrowths indicating high (average = 1292°C) and 
the low-Na group low temperatures (average = 
1167°C). But these temperatures do not reflect the 
conditions likely during diamond formation. If the 
intergrowth lamellae are due to exsolution, 
orthopyroxene must have exsolved from a formerly 
homogeneous clinopyroxene (with no coexisting 
orthopyroxene) as orthopyroxene with clinopyroxene 
lamellae are not observed. Modal recombination yields 
the original clinopyroxene composition for which 
minimum temperatures of formation can be calculated. 
This has been done for 5 samples and the temperatures 
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200 to 300 °C higher then the temperatures calculated 
for the intergrowths. These temperatures are high 
compared to those derived for touching pairs of 
inclusions worldwide and which fall along conductive 
continental geotherms. They are, however, within the 
high temperature range of a considerable number of 
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about 1220°C and 48-49 kbar. The application of a cpx-
grt thermometer (in the version of Krogh 1988) gives a 
temperature of about 1320°C at an assumed pressure of 
48 kbar. This temperature must approach the original 
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on-touching inclusions (Girnis et al. 1999). 
 further calculation can be made with the diamond 

ontaining garnet as a single inclusion, in addition to 
o orthopyroxene-clinopyroxene-intergrowths (one of 
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Figure 4: clinopyroxene inclusions from the “undetermined 
suite” shown in comparison to peridotitic and eclogitic 
clinopyroxenes from Namibia (Stachel et al., in prep.) and a 
worldwide database for inclusions in diamonds
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crystallization temperature, since the partitioning of Fe 
and Mg between orthopyroxene and clinopyroxene is 
close to unity at these conditions and thus, the 
temperature for the original cpx-grt pair cannot differ 
by much. The temperature calculated for the integrated 
clinopyroxene-orthopyroxene intergrowth gives about 
1415 °C (orthopyroxene-lamellae are thin and make up 
only 14%). This particular diamond therefore, must 
have crystallized at around 1400°C at pressures above 
50 kbar with subsequent cooling to about 1220°C along 
a P, T-trajectory which does not allow exsolution of 
garnet from the opx-cpx-intergrowth. This requires the 
P,T-slope to be steeper than that of Al-in-opx isopleths 
(Fig. 5). Such a cooling path also must apply to all 
ot
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clinopyroxene inclusions considered to belong to the 
“undetermined suite”. They also give high temperatures 
of 1503 °C and 1393 °C for the Na-rich samples and 
1298 °C for the Na-poorer sample.  
 
DISCUSSIONS AND CONCLUSIONS 
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pyroxene and garnet, and occurrence of a Cr-rich 
“titanate”. The “undetermined suite” is further 
characterized by low Mg-values, high K, Ba and Sr and 
can be divided into a high and a low sodium group. Its 
members show both peridotitic and eclogitic 
(websteritic) features. It further contains CaCO3, 
MgCO3, phlogopite and lindsleyite as “accessories” and 
SiO2 as exsolutions from the pyroxenes. 
The “cubo-octahedral shape” of the orthopyroxene-
clinopyroxene intergrowths suggests that they are 
syngenetic inclusions, implying that the exsolution 
process postdates encapsulation in the di
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Figure 5: Inferred conditions of crystallisation and cooling 
path for the cpx-opx lamellar intergrowths and for the three 
single cpx inclusions (open stars). Filled circles are 
inferred growth conditions for recombined clinopyroxenes 
of the low-Na group, open circle is an estimate for one 
high-Na cpx. Closed and open squares are temperature 
estimates for the lamellar intergrowths of the low- and 
high-Na group respectively. The open triangle is the Fe-
Mgcpx/grt temperature estimate for a sample containing 
garnet as well.  
All temperatures were calculated for 50 kbar. Pressures for 
the recombined cpx compositions seen in the diagram were 
selected such that lines connecting these points with the 
temperatures for the intergrowths have a steeper slope than 
the Al-isopleths for orthopyroxene. Also shown are a 
conductive continental geotherm and Al-isopleths in 
orthopyroxene for a lherzolitic composition with 
Cr/(Cr+Al)garnet = 0.2, Ca/(Ca+Mg+Fe)garnet = 0.05 and 
olivine with Fo0.9. The shaded arrows are suggested 
cooling paths. 
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garnet. The inclusions and their host diamonds 
crystallized at elevated temperatures of about 1300 to 
1500 °C and probably pressures between 60 and 70 
kbar. This occurred during events of interaction of a 
hot, CO2-rich (carbonate-rich) melt/fluid and mantle 
peridotite at oxygen fugacities of the CCO-buffer. They 
subsequently cooled back towards a conductive 
continental geotherm along P,T trajectories which did 
not allow garnet exsolution to accompany exsolution of 
orthopyroxene (Fig. 5). Locally the cratonic 
lithospheric mantle must have been virtually flooded by 
the CO2-rich melt/fluid to eliminate all olivine by 
carbonation reactions. 
At some depth a critical point for the system lherzolite-
CO2-H2O may exist and continuity between dolomitic 
melts and aqueous fluids may occur (Wyllie and 
Ryabchikov 2000). Hence, metasomatic agents 
occurring in the diamond stability field at oxygen 

s of the CCO-buffer may be CO2-rich melts 
tites) or supercritical fluids. This agent carries 

incompatible elements like K, Ba and Na and also Ca 
and Fe (to explain the range in Mg-values), but must be 
low in Al. In a study of metasomatised peridotites, 
Erlank et al. (1987) observed that LIMA phases 
coexisting with phlogopite were restricted to samples 
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harzburgites. In compliance with Jones (1982) they 
suggested that the Cr-rich “titanates” grew by
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metasomatic replacement of Cr-rich spinels. This is also 
a viable explanation for the presumed LIMA phase in 
diamond Nam-217B. 
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