MINERAL INCLUSIONS IN DIAMONDS FROM JAGERSFONTEIN MINE.

Rickard, R.S.⁽¹⁾; Gurney, J.J.⁽¹⁾ and Harris, J.W.⁽²⁾.

(1) Dept. of Geochemistry, University of Cape Town, S.A.;(2) Dept. of Applied Geology, University of Strathclyde, Glasgow, U.K.

A total of 33 inclusions have been recovered from 28 diamonds from the now defunct Jagersfontein mine. Despite the small suite of minerals studied, the results are noteworthy because of the high proportion of unusual features exhibited within the standard world-wide framework that both eclogitic and peridotitic diamond inclusions have been found.

The peridotitic suite is represented by chromites, garnets and olivines. The eclogitic suite minerals found were garnets, clinopyroxenes and coesite, whilst orthopyroxene was also recorded in a websteritic association geochemically linked to the eclogitic parageneses as previously described at Monastery and Orapa.

In the peridotitic suite, 4 chromites have Cr₂O₃ contents ranging from 61 to 64.2 wt%, 3 sub-calcic garnets fit in the G10 field. One of these (J6a) is unusual in having only 2.51 wt% Cr2O3. Completing the suite are 3 olivines with Fo contents in the range 91-92. They are unusual in having high Cr and Ca contents. A fourth olivine (J15a) has a Fo content of 78.8, outside the peridotitic range and is only matched in mantle rocks by olivines in garnet websterites, such as those reported from Matsoku, Lesotho. J15a also has Fo equivalents in megacryst suite olivines. A websterite association is also proved by two orthopyroxene inclusions (J14a, J22a) which occur in two three phase polymineralic inclusions together with garnet and clinopyroxene. Both orthopyroxenes are enriched in FeO and CaO and have low Mg/Mg+Fe. The Clinopyroxenes are low in Al₂O₃ and Na₂O compared to those from the eclogitic suite. A third clinoproxene inclusion (J10a) has a similar composition and is also included in the websteritic association. The garnets have TiO₂ levels of .6 wt%, Cr₂O₃ of 1.4 wt% and 1.08 wt%, and Na₂O levels of .08 wt% and .14 wt%, making them more enriched in these elements than similar inclusions from Monastery and Orapa.

The pyroxene solid solution in garnet first noted at Monastery Mine (Moore 1986) and interpreted to reflect a particularly high crystallisation pressure, has been found to be common in Jagersfontein diamonds, certainly occurring in garnets in seven diamonds in the suite studied. One of these diamonds, (J22) contains a websteritic assemblage gar-cpx-opx in addition to (gar-px) ss. The websteritic assemblage gives calculated equilibration conditions of 1272°C at 49.5kb. (using Lindsley and Dixon 1976 and Nickel and Green 1985), whilst the (gar-px) ss. indicates pressures > 145kb. The other six garnet/clinopyroxene solid solutions give a pressure range of 100 to 145kb which suggests that at least some of the diamonds from Jagersfontein have formed in the depth interval from 150km to in excess of 450km. The same range was implied at Monastery (Moore 1986) and Brazil (Wilding and Harte, 1989). A second websteritic assemblage in (J14) gives similar calculated equilibration conditions, whilst an eclogitic garcpx pair in diamond (J37) equilibrated at 1295°C at an assumed pressure of 50kb according to the method of Ellis and Green (1979). These are within the diamond stability field.

The remaining minerals coesite (J13a) which co-existed with a garnet (J13b), and a garnet clinopyroxene co-existing pair (J37) are clearly eclogitic. The calculated equilibration temperature for J37 is 1295° C using the method of Ellis and Green (1979), and assuming all iron is present as Fe²⁺, and a pressure of 50kb. Again this is within the diamond stability field and in reasonable agreement with the calculated temperatures of the websteritic association, which suggest that they were formed under similar temperature/pressure conditions.

It is inferred from this small suite of mineral inclusions from Jagersfontein diamonds that a probably incomplete inventory of diamond source rocks includes garnet and or chromite harzburgite, iron-rich eclogite, garnet websterite, majorite and rare coesite eclogite. Eclogite xenoliths with diamond have been reported from Jagersfontein previously. Majorite could be the protolith for rare mantle assemblages recently described by Haggerty and Sautter (1990). Sub-calcic peridotitic (G10) garnets and high Cr₂O₃ chromites, presumably derived from disaggregated diamond harzburgite are present as macrocrysts in the Jagersfontein kimberlite. The websterites and coesite eclogite have not been reported as xenoliths.

The overwhelming majority of peridotitic xenoliths described by others from the Jagersfontein kimberlite are not suitable diamond source rocks and have distinctly different mineral compositions compared to the inclusions in the diamonds. This situation pertains to all other similarly studied localities in southern Africa.

The low proportion of peridotitic inclusions in Jagersfontein diamonds contrasts with their abundance at Koffiefontein, 55km to the NNW.

References

Ellis, D.J., and Green, D.H. (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. 71, 13-22.

Haggerty, S.E., and Sautter, V. (1990) Ultradeep (Greater thar 300 Kilometers), Ultramafic Upper Mantle Xenoliths. Science Vol. 248, 993-996.

Lindsley, D.H., and Dixon, S.A. (1976) Diopside-enstatite equilibria at 850 to 1400°C, 5 to 35 Kbars. Am. J. Sci. 276, 1285-1301.

Moore, R.O. (1986) A study of the kimberlites, diamonds and associated rocks and minerals from Monastery Mine, South Africa. PhD thesis (unpublished), University of Cape Town, South Africa.

Nickel, K.G., and Green, D.H. (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett. 73, 158-170.

Wilding, M.C., and Harte, B. (1989) Evidence of Asthenospheric source for Diamonds from Brazil. 28th I.G.C. Abstracts. Vol.3, 359-360.

TABLE 1: Inclusions in Jagersfontein Mine Diamonds.

	J1a	J2a	J3a	J4a	J6a	J7a	J8a	J10a	J11a	J12a
	Chr	Chr	Chr	Chr	Gar	Gar	Gar	Срх	Gar	Olv
								-1		
SiO ₂	n.d.	n.d.	n.d.	n.d.	42.43	41.83	41.56	55.16	41.32	40.78
TiO ₂	n.d.	.14	.07	.02	n.d.	.02	.03	.11	.13	n.d
Al ₂ O ₃	7.08	7.40	9.50	4.20	22.37	15.36	18.07	1.15	22.76	.02
Cr ₂ O ₃	63.27	62.35	60.96	64.18	2.51	11.98	8.03	.15	.17	.06
FeO	13.78	14.61	13.46	17.90	5.57	4.59	6.11	5.53	12.80	7.14
MnO	.79	.82	.79	.90	.24	.36	.34	.04	.41	.11
	14.36					24.85	22.72	19.37		
MgQ	14.30	13.70	14.93	11.93	23.23				15.78	51.08
CaO					3.08	.98	2.31	16.74	6.36	.06
Na ₂ O								1.06	.10	
K ₂ O								.03		
NiO										.43
Total	99.29	99.02	99.13	99.13	99.43	99.97	99.17	99.34	99.83	99.68
	J13a	J13b	J14a	J14a	J14a	J15a	J17a	J19a	J21a	J22a
	Coes	Gar	Gar	Срх	Орх	Olv	Срх	Olv	Olv	Gar
SiO ₂	98.78	42.14	41.47	54.41	56.32	38.52	55.45	40.39	41.07	40.92
TiO ₂	.05	.16	.60	.14	.11	.02	n.d.	n.d.	n.d.	.57
Al ₂ O ₃	.09	20.90	21.10	1.36	.76	.02	.66	n.d.	.03	20.40
Cr ₂ O ₃		.26	1.40	.24	.10	.02	.08	.06	.08	1.08
FeO	.20	13.37	13.03	6.82	10.88	19.48	3.62	8.25	8.03	13.75
MnO		.39	.41	.20	.17	.19	.08	.10	.09	.39
MgO		16.07	17.15	18.84	30.77	40.68	18.32	49.64	50.05	17.37
CaO	.11	6.07	5.04	17.14	1.31	.11	20.85	.07	.09	4.71
Na ₂ O		.25	.07	.90	.15		1.04			.14
K ₂ O							n.d.			
NiO								.35	.38	
MIO								.55	.50	
Total	99.23	99.61	100.26	100.03	100.56	99.04	100.10	98.86	99.82	99.33
	J22a	J22a	J22b	J23a	J24a	J25a	J26a	J26b	J27a	J28a
	J22а Срх	J22a Opx	J22b (Gar-px) _{ss}	J23a (Gar-px) _{ss}	J24a Gar	J25a (Gar-px) _{ss}	J26a Gar	J26b Gar	J27a (Gar-px) _{ss}	J28a Gar
	Срх	Орх	(Gar-px) _{ss}	(Gar-px) _{ss}	Gar	(Gar-px) _{ss}	Gar	Gar	(Gar-px) _{ss}	Gar
SiO ₂	Срх 54.16	Орх 55.95	(Gar-px) ₈₀ 47.94	(Gar-px) ₈₈ 46.17	Gar 41.15		Gar 40.49	Gar 40.19	(Gar-px) ₈₈ 44.79	Gar 41.52
SiO2 TiO2	Срх	Орх	(Gar-px) _{ss}	(Gar-px) _{ss}	Gar	(Gar-px) _{ss}	Gar	Gar	(Gar-px) _{ss}	Gar
	Срх 54.16	Орх 55.95	(Gar-px) ₈₀ 47.94	(Gar-px) ₈₈ 46.17	Gar 41.15	(Gar-px) ₈₈ 42.96	Gar 40.49	Gar 40.19	(Gar-px) ₈₈ 44.79	Gar 41.52
TiO_2 Al_2O_3	Cpx 54.16 .12 1.65	Opx 55.95 .08	(Gar-px) ₈₈ 47.94 .67 8.82	(Gar-px) ₈₈ 46.17 .23	Gar 41.15 .90	(Gar-px) ₈₈ 42.96 .19	Gar 40.49 .42	Gar 40.19 .44	(Gar-px) ₈₈ 44.79 .23	Gar 41.52 .56
TiO_2 Al_2O_3 Cr_2O_3	Cpx 54.16 .12 1.65 .27	Opx 55.95 .08 .71 .06	(Gar-px) ₈₈ 47.94 .67 8.82 .55	(Gar-px) ₈₉ 46.17 .23 15.95 .28	Gar 41.15 .90 19.83 2.23	(Gar-px) ₈₈ 42.96 .19 19.34 .20	Gar 40.49 .42 22.47 .08	Gar 40.19 .44 21.99 .08	(Gar-px) ₈₈ 44.79 .23 16.69 .22	Gar 41.52 .56 21.84 .53
TiO_2 Al_2O_3 Cr_2O_3 FeO	Срх 54.16 .12 1.65 .27 7.08	Opx 55.95 .08 .71 .06 10.29	(Gar-px) ₈₈ 47.94 .67 8.82 .55 13.75	(Gar-px) ₈₈ 46.17 .23 15.95 .28 11.05	Gar 41.15 .90 19.83 2.23 13.22	(Gar-px) ₈₈ 42.96 .19 19.34 .20 13.00	Gar 40.49 .42 22.47 .08 15.25	Gar 40.19 .44 21.99 .08 15.45	(Gar-px) ₈₈ 44.79 .23 16.69 .22 12.82	Gar 41.52 .56 21.84 .53 11.91
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	Cpx 54.16 .12 1.65 .27 7.08 .15	Opx 55.95 .08 .71 .06 10.29 .17	(Gar-px) ₈₈ 47.94 .67 8.82 .55 13.75 .30	(Gar-px) ₈₈ 46.17 23 15.95 28 11.05 27	Gar 41.15 .90 19.83 2.23 13.22 .42	(Gar-px) ₈₈ 42.96 .19 19.34 .20 13.00 .43	Gar 40.49 .42 22.47 .08 15.25 .30	Gar 40.19 .44 21.99 .08 15.45 .31	(Gar-px) ₈₅ 44.79 .23 16.69 .22 12.82 .35	Gar 41.52 .56 21.84 .53 11.91 .26
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35	Opx 55.95 .08 .71 .06 10.29 .17 31.28	(Gar-px) ₈₈ 47.94 .67 8.82 .55 13.75 .30 22.08	(Gar-px) ₈₈ 46.17 23 15.95 .28 11.05 .27 19.25	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94	(Gar-px) ₈₈ 42.96 .19 19.34 .20 13.00 .43 15.91	Gar 40.49 .42 22.47 .08 15.25 .30 12.41	Gar 40.19 .44 21.99 .08 15.45 .31 13.09	(Gar-px) ₈₅ 44.79 .23 16.69 .22 12.82 .35 18.86	Gar 41.52 .56 21.84 .53 11.91 .26 18.95
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17	(Gar-px) == 47.94 .67 8.82 .55 13.75 .30 22.08 5.52	(Gar-px) == 46.17 23 15.95 .28 11.05 .27 19.25 5.91	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43	(Gar-px) ₈₈ 42.96 .19 19.34 .20 13.00 .43 15.91 7.94	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48	(Gar-px) == 44.79 .23 16.69 .22 12.82 .35 18.86 6.05	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29	(Gar-px) ₈₈ 47.94 .67 8.82 .55 13.75 .30 22.08	(Gar-px) ₈₈ 46.17 23 15.95 .28 11.05 .27 19.25	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94	(Gar-px) ₈₈ 42.96 .19 19.34 .20 13.00 .43 15.91	Gar 40.49 .42 22.47 .08 15.25 .30 12.41	Gar 40.19 .44 21.99 .08 15.45 .31 13.09	(Gar-px) ₈₅ 44.79 .23 16.69 .22 12.82 .35 18.86	Gar 41.52 .56 21.84 .53 11.91 .26 18.95
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17	(Gar-px) == 47.94 .67 8.82 .55 13.75 .30 22.08 5.52	(Gar-px) == 46.17 23 15.95 .28 11.05 .27 19.25 5.91	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43	(Gar-px) ₈₈ 42.96 .19 19.34 .20 13.00 .43 15.91 7.94	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48	(Gar-px) == 44.79 .23 16.69 .22 12.82 .35 18.86 6.05	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29	(Gar-px) == 47.94 .67 8.82 .55 13.75 .30 22.08 5.52	(Gar-px) == 46.17 23 15.95 .28 11.05 .27 19.25 5.91	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43	(Gar-px) ₈₈ 42.96 .19 19.34 .20 13.00 .43 15.91 7.94	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48	(Gar-px) == 44.79 .23 16.69 .22 12.82 .35 18.86 6.05	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d.	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d.	(Gar-px) _■ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33	(Gar-px) _■ 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04	(Gar-px) _{ss} 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29	(Gar-px) == 47.94 .67 8.82 .55 13.75 .30 22.08 5.52	(Gar-px) == 46.17 23 15.95 .28 11.05 .27 19.25 5.91	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43	(Gar-px) ₈₈ 42.96 .19 19.34 .20 13.00 .43 15.91 7.94	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48	(Gar-px) == 44.79 .23 16.69 .22 12.82 .35 18.86 6.05	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d.	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d.	(Gar-px) _■ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33	(Gar-px) _■ 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04	(Gar-px) _{ss} 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d.	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d.	(Gar-px) _■ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33	(Gar-px) _■ 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04	(Gar-px) _{ss} 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d.	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99	(Gar-px) _■ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96	(Gar-px), 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04	(Gar-px) _{as} 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 .99.84	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99	(Gar-px) _■ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96	(Gar-px), 46.17 23 15.95 28 11.05 27 19.25 5.91 .69 99.80	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99	(Gar-px) _■ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96	(Gar-px), 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04	(Gar-px) _{as} 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 .99.84	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) ₁₈	(Gar-px) _■ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px) _■	(Gar-px), 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px),	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx	(Gar-px) _{as} 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) ₁₀ 45.89	(Gar-px), 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px), 42.84	(Gar-px), 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px), 32 (Gar-px), 32 47.29	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06	(Gar-px) _■ 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) _m 45.89 .22	(Gar-px), 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px), 42.84 .10	(Gar-px)= 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px)= 47.29 .19	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂ Al ₂ O ₃	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. .99.99 J29a (Gar-px) ₁₁ 45.89 .22 17.27	(Gar-px) ₁₀ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px) ₁₀ 42.84 4.24 10 21.46	(Gar-px), 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px), 47.29 .19 14.09	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 .99.84 J37a Cpx 54.81 .60 6.84	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) _m 45.89 .22	(Gar-px), 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px), 42.84 .10	(Gar-px)= 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px)= 47.29 .19	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂ Al ₂ O ₃	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) ₁₁ 45.89 .22 17.27	(Gar-px) ₁₀ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px) ₁₀ 42.84 4.24 10 21.46	(Gar-px), 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px), 47.29 .19 14.09	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 .99.84 J37a Cpx 54.81 .60 6.84	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO NiQO NiQO Total SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 m.d. 99.99 J29a (Gar-px) ₈₁ 45.89 .22 17.27 .7	(Gar-px) _■ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px) _™ 42.84 .10 21.46 .11	(Gar-px), 46.17 23 15.95 28 11.05 27 19.25 5.91 .69 99.80 J32a (Gar-px), 13 47.29 .19 14.09 .21 11.00	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52 n.d. 13.47	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67 .02 9.16	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60 6.84 .18 5.52	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94 .18 13.03	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) _m 45.89 .22 17.27 .41 10.26 .25	(Gar-px)= 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px)= 42.84 .10 21.46 .11 3.49 .33	(Gar-px)= 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px)= 47.29 .19 14.09 .21 11.000 .29	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52 n.d. 13.47 .12	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67 .02 9.16 .09	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60 6.84 .18 5.52 .11	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94 .18 13.03 .31	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) _m 45.89 .22 17.27 .41 10.26 .25 .96	(Gar-px), 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px), 42.84 .10 21.46 .11 13.49 .33 15.90	(Gar-px), 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px), 19 14.09 .21 11.00 .29 19.35	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52 n.d. 13.47 .12 8.09	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67 .02 9.16 .09 8.62	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60 6.84 .18 5.52 .11 13.82	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94 .18 13.03 .31 16.62	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) ₁₁ 45.89 .22 17.27 .41 10.26 .25 19.60 5.24	(Gar-px), 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px), 42.84 .10 21.46 .11 13.49 .33 15.90 6.10	(Gar-px), 46.17 23 15.95 28 11.05 27 19.25 5.91 .69 99.80 J32a (Gar-px), 19 14.09 21 11.00 29 19.35 7.03	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52 n.d. 13.47 .129 8.29 8.20 9.13.77	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67 .02 9.16 .09 8.62 13.91	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60 6.84 .18 5.52 .11 13.82	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94 .18 13.03 .31 16.62 4.71	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) _m 45.89 .22 17.27 .41 10.26 .25 .96	(Gar-px), 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px), 42.84 .10 21.46 .11 13.49 .33 15.90	(Gar-px), 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px), 19 14.09 .21 11.00 .29 19.35	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52 n.d. 13.47 .12 8.09 13.77	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67 .02 9.16 .09 8.62 13.91 4.54	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60 6.84 .18 5.52 .11 13.82 13.94 4.00	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94 .18 13.03 .31 16.62	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO NiO Total SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) ₁₁ 45.89 .22 17.27 .41 10.26 .25 19.60 5.24	(Gar-px), 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px), 42.84 .10 21.46 .11 13.49 .33 15.90 6.10	(Gar-px), 46.17 23 15.95 28 11.05 27 19.25 5.91 .69 99.80 J32a (Gar-px), 19 14.09 21 11.00 29 19.35 7.03	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52 n.d. 13.47 .129 8.29 8.20 9.13.77	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67 .02 9.16 .09 8.62 13.91	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60 6.84 .18 5.52 .11 13.82	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94 .18 13.03 .31 16.62 4.71	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) ₁₁ 45.89 .22 17.27 .41 10.26 .25 19.60 5.24	(Gar-px), 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px), 42.84 .10 21.46 .11 13.49 .33 15.90 6.10	(Gar-px), 46.17 23 15.95 28 11.05 27 19.25 5.91 .69 99.80 J32a (Gar-px), 19 14.09 21 11.00 29 19.35 7.03	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52 n.d. 13.47 .12 8.09 13.77	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67 .02 9.16 .09 8.62 13.91 4.54	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60 6.84 .18 5.52 .11 13.82 13.94 4.00	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94 .18 13.03 .31 16.62 4.71	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) ₁₁ 45.89 .22 17.27 .41 10.26 .25 19.60 5.24 .44	(Gar-px) _■ 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px) _■ 42.84 .10 21.46 .11 13.49 .33 15.90 6.10 .12	(Gar-px), 46.17 .23 15.95 .28 11.05 .27 19.25 5.91 .69 99.80 J32a (Gar-px), 14.09 .21 11.00 .29 19.35 7.03 .54	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 100.16 J34a Cpx 54.06 .61 6.52 n.d. 13.47 .12 8.09 13.77 3.777 .05	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67 .02 9.16 .09 8.62 13.91 4.54 .04	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60 6.84 .18 5.52 .11 13.82 13.94 4.00 .24	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94 .18 13.03 .31 16.62 4.71 .24	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total	Cpx 54.16 .12 1.65 .27 7.08 .15 18.35 16.37 1.43 n.d. 99.58	Opx 55.95 .08 .71 .06 10.29 .17 31.28 1.17 .29 n.d. 99.99 J29a (Gar-px) _m 45.89 .22 17.27 .41 10.26 .524 .44 99.58	(Gar-px), 47.94 .67 8.82 .55 13.75 .30 22.08 5.52 .33 99.96 J31a (Gar-px), 42.84 .10 21.46 .11 13.49 .33 15.90 6.10	(Gar-px), 46.17 23 15.95 28 11.05 27 19.25 5.91 .69 99.80 J32a (Gar-px), 19 14.09 21 11.00 29 19.35 7.03	Gar 41.15 .90 19.83 2.23 13.22 .42 16.94 5.43 .04 100.16 J34a Cpx 54.06 .61 6.52 n.d. 13.47 .12 8.09 13.77	(Gar-px)= 42.96 .19 19.34 .20 13.00 .43 15.91 7.94 .26 100.23 J35a Cpx 54.27 .55 8.67 .02 9.16 .09 8.62 13.91 4.54	Gar 40.49 .42 22.47 .08 15.25 .30 12.41 8.28 .14 99.84 J37a Cpx 54.81 .60 6.84 .18 5.52 .11 13.82 13.94 4.00	Gar 40.19 .44 21.99 .08 15.45 .31 13.09 8.48 .14 100.17 J37b Gar 40.99 .70 22.94 .18 13.03 .31 16.62 4.71	(Gar-px) == 44.79 23 16.69 22 12.82 .35 18.86 6.05 .29	Gar 41.52 .56 21.84 .53 11.91 .26 18.95 3.79 .08

Mineral compositions obtained on a Cameca Camebax Microbeam electron microprobe, using close standards and a ZAF correction proceedure.

J14a & J22a are single inclusions of Gar-Cpx-Opx minerals touching each other.