A STUDY OF MICROINCLUSIONS IN MINERALS OF SPANISH LAMPROITES.

I. Solovova; A. Girnis; L. Kogarko and I. Ryabchikov.

in order to estimate thermodinamic conditions and melt compositions oi Spanish lamproites, microinclusions in olivine, ciinopyroxene, sanidine, apatite, phlogopite, and calcite have oeen studied. Among daughter minerals in melt incusions 01 , Phi, San and F -Ap were determined. Unusual compositions of daugnter minerais correspond to unusual chemistry of lamproitic iavas: 1.e. San contains large quantities of both Mg and Fe , Ini contains up to $8 \mathrm{wt} \%$.TiO , and more then $1 \mathrm{wt} \%$.F .

Fomogenization temperature of melt inclusions in the most magnesian oilvine is $1250^{\circ} \mathrm{C}$ and decreases with increasing of $\mathrm{X}_{\text {Pe }}$ OI OI to $1050^{\circ} \mathrm{O}$. Average composition of nomogenized melt inclusions in the earliest olivine studied $\left(\mathrm{X}_{\mathrm{F}}=0.08\right.$) is following: (wt.\%) $\mathrm{SiO}_{2} 52.1, \mathrm{THO}_{2} 0.2, \mathrm{Al}_{2} \mathrm{O}_{3} 11.6$, FeO(t) 3.9, MgO 5.4, CaO 0.1, BaO 0.3, $\mathrm{Na}_{2} \mathrm{O} 0.9, \mathrm{~K}_{2} \mathrm{O} 13.5, \mathrm{P}_{2} \mathrm{O}_{5}$ 3.4, $\mathbb{F} 0.9,010.3$. The composition of the late-stage melts is represented by primary melt inclusion in calcite: S10. 64.7 , $T 10_{2} 0.8, \mathrm{Al}_{2} \mathrm{O}_{3} 17.8, \mathrm{FeO}(\mathrm{t}) 1.1, \mathrm{MgO} 0.2, \mathrm{CaO} 2.5, \mathrm{Na}_{2} \mathrm{O} 0.3$, $\mathrm{K}_{2} \mathrm{O}$ 4.6. Water content of this evolved melt is about $8 \mathrm{wt}. \mathrm{\%}$. تor more primitive meits a vaiue $4 \mathrm{wt} . \%$ have been estimated.

Fluid inciusions are mostly partially decrepitated iow-dense CO_{2}. Sometimes salt crystalls on the walls of fluid inciusions are visible, proving high halogen concentrations in the fluid.

Daughter sanidine in melt inclusions contains appreciable gmount of Fe^{3+} which is characteristic of high oxygen fugacity. On the other hand liquid immiscibility detected in residual glasses is possible only under relatively reduced conditions. Thus our data confilm highly variable oxygen fugacity during iamproite crystallization wich was advocated by Venturelli et al.(1988).

Un the basis of our data we propose a model of primary meit formation by the melting of Phl-bearing iherzolite at reiativeiy low pressures.

