TREND OF SiO₂ IN GARNETS FROM KIMBERLITE PIPES.

G.D. Feoktistov and B.M. Vladimirov. Institute of Earth's Crust, 664033 – Irkutsk, USSR.

Chemical compositions of garnets from the Yakutian kimberlite province (Siberian plataform) whose paragenetic associations have been previously described by N.V. Sobolev (1), were studied statistically. To this aim 122 chemical analyses of garnets from kimberlite concentrates, eclogite xenoliths, grospydites and disthen eclogites, from diamondiferous eclogites, from inclusions in diamonds, intergrowths with diamonds and associated with diamonds from Sobolev's work (1), were selected.

Regular surface trend of SiO₂ of second order in garnets in MgO-Al₂O₃ and Cr₂O₃-CaO coordinates is established. Garnets enriched in Al₂O₃ and MgO contain abundant SiO₂ in respect to total amount of RO and R₂O₃. MgO and CaO, Al₂O₃ and Cr₂O₃ pairs of oxides display the strongest negative correlations. SiO₂ have strong correlations: positive with MgO and negative with CaO. Moreover, SiO₂ shows a significant positive correlation with Al₂O₃, whereas its correlation with Cr₂O₃ is negative, below the level of significance of correlation coefficient. The above correlations influence variation trend of SiO₂ content: in garnets it generally increases with increasing of MgO (less for Al₂O₃) and with decreasing of CaO (less for Cr₂O₃).

A stable increased admixture of Na₂O (0,1-0,22%) compared to garnets from eclogites of metamorphic complexes (0,001-0,05%) of Na₂O) is established in garnets from diamondiferous eclogites (2). High contents of Na₂O admixture are also observed in garnets enclosed in diamond (1).

Increased admixture of Na₂O in garnets testifies (1) their belonging to high-pressure diamond-pyrope facies, with isomorphous replacement CaAl \implies NaSi taking place in such garnets. Possibility of this isomorphism is proved by experimental crystalization of garnet of Na₂CaSi₅O₁₂ composition at pressure up to 18 GPa (3). When synthesizing garnet phase at high pressure (10–20 GPa). A.E.Ringwood and A. Major (4) demonstrated the possibility of crystallization of pyroxene solid solution with garnet in which an excess of silica due to the entrance into the garnet composition of the minal Mg₃(MgSi)Si₃O₁₂ appears, i.e. during isomorphous replacement MgSi \implies AlAl.

We found that variation trend of SiO₂ content in garnet evidences increase of SiO₂ content in garnet groups whose paragenesis obviously corresponds to diamond-pyrope facies (pyropes from intergrowths with diamonds of the Mir pipe and magnesian garnets included in diamond) and also in garnet groups extracted from rocks and possibly belonging ato diamond-pyrope facies (garnets associated with diamonds, garnets of diamondiferous eclogites and chrome-pyropes poor in Ca, from kimberlite concentrate).

The presented data suggest that abundant silica content in garnet composition may indicate their formation under pressure corresponding to conditions of diamond-pyrope depth facies. Its appearance is possibly conditioned by the entrance into the garnet composition either of the minal Na₂CaSi₅O₁₂ with simultaneous increase (>0,1%) of Na₂O content, or of the minal Mg₃(MgSi)Si₃O₁₂ with small admixture of Na₂O in garnets.

REFERENCES:

- 1. Sobolev, N.V. Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. Novosibirsk, Nauka, 1964, 264 p.
- 2. Sobolev, N.V., Lavrent'ev Yu. Contrib. Miner. Petrol., 1971, vol. 37, p. 7-12.
- 3. Ringwood A.E., Major A. Earth and Planet. Sci. Lett., 1971, vol. 12, nº. 4.
- 4. Ringwood A.E., Major A. In: Petrology of the upper mantle. M.: Mir, 1968, p. 203-273.