of SiO_,TiO_,Al_O_,Na_O,K_O,P_O_ and incompatible trace elements.

The geochemical evolution have been investigated by molecular ratio diagrams with Zr as the ratio element in order to eliminate deformation of the data by the closure effect.

The kimberlites and lamproites have differing trends, and one rock type cannot have evolved from the other. The geochemical variation of the lamproites modelled with congruent melting of known mantle phases give rich/phl/cpx/ap/ru = 30/45/20/3/2. This solution yields too high (Fe,Mg)O values and too low alkali content. A model is proposed where incongruent melting of phlogopite to a melt of sanidine-ilmenite composition leaves a residue of olivine. This model gives rich/phl/cpx/san/ap/ilm = 38/27/11/16/3/5. The kimberlite variation can be explained by melting of ol/phl/cc/cpx/spi/ap = 65/17/9/5/3/1.

REE distributions of both rock types indicates that the mantle source was heavily enriched in REE and especially the LREE.

C14

PETROGRAPHY, GEOCHEMISTRY AND Sr ISOTOP-IC COMPOSITION OF THE MBUJI-MAYI AND KUN-DULUNGU KIMBERLITES (ZAÏRE).

M. FIEREMANS, J. HERTOGEN, D. DEMAIFFE Laboratorium voor Structurele Geologie, K.U.L., Redingenstraat 16 bis, B-3000 Leuven, Bełgium.

At Mbuji-Mayi the diamond-rich kimberlite breccia, of late Cretaceous age, contains nodules of "primary kimberlite". Phenocryst phases are Cr-chlorite (often rimmed or replaced by phlogopite) and two generations of olivine completely pseudomorphosed to phlogopite and calcite. The very fine-grained matrix consists of Cr-chlorite, hydromica and calcite with minor amounts of apatite, magnetite and rutile. The phenocryst assemblage and mineral transformations are rather peculiar. Given the absence of phlogopite phenocrysts, one cannot rule out the possibility that these kimberlites were originally of basaltic type.

Except for a higher carbonate content, they are chemically similar to South-African kimberlites. The 87 Sr/ 86 Sr initial ratios are low (0.7040-0.7045) which point to a mantle origin without crustal contamination. The isotopic ratio in rare carbonate inclusions is equally low suggesting that they are genetically linked to the kimberlites. REE patterns are the same as those observed in South-African kimberlites : (La/Yt0)N*100 ; LaN=100-600 ; no Eu anomaly. Crrich diopside megacryst have lower 87 Sr/ 86 Sr ratios (ca. 0.7030) implying a xenolithic character. The pronounced HREE depletion seems to indicate that they formed in equilibrium with garnet.

The Kundulungu kimberlites are of the basaltic type (fresh olivine phenocrysts, fine-grained chloritic matrix, absence of phlogopite phenocrysts). They are much lower in carbonates but, in terms of trace element and Sr isotopic geochemistry they are very similar to the Mbuji-Mayi and other kimberlites.

Q155

Nd AND Sr ISOTOPIC COMPOSITIONS AND REE GEOCHEMISTRY OF ALKALI BASALTS FROM THE MASSIF CENTRAL, FRANCE.

CHAUVEL, Catherine and *JAHN, Bor-ming*, Centre Armoricain d'Etude Structurale des Socles (CNRS), Université de Rennes, Institut de Géologie, 35042 RENNES Cédex, France.

Cenozoic volcanic rocks of alkali basalt family are widespread in the Massif Central. They are underlain by the Hercynian granitic basement. The compositions of basalts range from hawaiitic to basanitic, but basanites dominate the rock types. Results show that the basalts from the Cantal, the Aubrac and the Mont Dore (T< 10 m.y.) have 143 Nd/ 144 Nd = 0.51283 to 0.51299 or ϵ_{Nd} = +3.7 to +6.7, and 87 Sr/ 86 Sr = 0.70338 to 0.70435. Quaternary basalts from the Chaîne des Puys yield 87 Sr/ 86 Sr = 0.70366 to 0.70458. In a Nd-Sr isotopic correlation diagram, these data fall within the correlation band. The positive ENd values suggest that their magma sources have had a time-integrated LREE depletion, similar to that observed for the MORB sources.

The REE data show typical LREE enrichment of alkali basalts, with Lan = 80-250 X, Lun = 7-13 X, $(La/Yb)_N = 10-20$, and practically no Eu anomalies. Geochemical arguments do not favor any significant crustal contamination for the derivation of these basalts studied. Theoritical considerations call for a recent mantle metasomatism in which a LREE depleted source region was enriched in LREE and other LIL elements before partial melting events. Since the positive ε_{Nd} values and enriched LREE abundances are so common to most alkali basalts and related rocks, it appears that mantle metasomatism is precursory to the generation of alkali basalts and that the influx of metasomatic fluids have localized the melting events.

C16

Sr, Nd ISOTOPES AND TRACE ELEMENT GEO-CHEMISTRY OF MELILITITES FROM WESTERN EU-ROPE

C. ALIBERT, A. MICHARD, F. ALBAREDE

Centre de Recherches Pétrographiques et Géochimiques, Ecole Nationale Supérieure de Géologie Appliquée, B.P. 20, 54501 Vandœuvre Cédex, France.

Melilitite bearing nephelinites (melilitites) are commonly found in provinces where evidence of melting at deep levels in the mantle (kimberlites, carbonatites) exists. They are actually among the most mafic basaltic rocks and their high content in REE and Sr together with a fairly rapid eruption mode would suggest little contribution of high level contamination in their genesis.

Twenty cenozoic melilitites from Europe (Spain, France, W. Germany and Czekoslovakia) have been analysed for Sr, Nd isotopic composition and trace element (REE + transition elements) contents. $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ and $^{143}\mathrm{Nd}/^{144}\mathrm{Nd}$ ratios plot mostly within and partly below the oceanic trend with no obvious regional variation. The average $^{17}\mathrm{Sr}/^{86}\mathrm{Sr}$ ratio is 0.703776 (range 0.70322-0.70446), the average $^{143}\mathrm{Nd}/^{144}\mathrm{Nd}$ ratio of 0.512832 (0.51269-0.51300). Leaching experiments show isotopic inhomogeneities and suggest the present of a high $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ componentinterpreted as being of crustal origin. The origin of melilitite could be found in an ordinary (oceanic type) upper mantle of which the melting products experienced contamination at high level during upward migration of the magma in the crust. The Sr/Nd ratio of the contaminant is tentatively estimated to fall in the range 3 to 15 which could fit upper crustal-rocks such as shales or granites.

REE elements present the usual pattern of alkali-rocks with high concentration level, high $\dot{C}e/\,\rm Yb$ ratios (58 to 130) and no Eu anomaly.

Beside additions evidence for crustal contamination, REE and tran-

TERRA cognita 2, 1982

sition elements may carry information on the origin of the magmas. If melting of a recently metasomatized mantle could provide a satisfactory interpretation, wall rock alteration formalized with the zone refining equation fit well the present data. An important implication of this process is the rapid equilibration of high partition coefficient elements (HRE for instance) with conduit walls in contrast with low partition coefficient elements (LRE). It is found that a liquid generated in the garnet stability field of the mantle and rising through spinel therzolites or harzburgites would result in magmas.taving geochemical characteristics similar to melilitites or ki.nberlites.

C17

Nd ISOTOPES IN KIMBERLITES AND MANTLE EVO-

A.R. BASU, and M. TATSUMOTO

Department of Geological Sciences, University of Rochester, N.Y 14627, USA, and U. S.

Geological Survey, Box 25046, Denver, Colorado 80225, USA

Estimation of P, T, conditions of equilibration of garnet peridotite xenoliths in kimberlites indicates that kimberlitic liquids are derived from depths greater than 180 kms. No other rock, with a depth of origin greater than 180 kms, is readily available for analysis. A Nd-isotopic study of kimberlites of different ages from different continents is, therefore, important in understanding the history and evolution of the mantle. The present study is an extension of our earlier study (Basu and Tatsumoto, 1978, 1979, 1980) where we demonstrated that kimberlites are derived from a relatively undifferentiated chondritic mantle.

We have analyzed the Nd-isotopic composition of the following kimberlites and related rocks: Nine kimberlite pipes from South Africa and Lesotho; two from southern India; one from the U.S.S.R.; fifteen kimberlite pipes and related dike rocks from eastern and central U.S. and three pipes from the Shangdong Province of eastern China. The age of emplacement of these pipes ranges from 1300 m.v. to 90 m.v. before present. The initial Nd-isotopic compositions of these kimberlitic rocks expressed as ε_{Nd}^{I} with respect to a chondritic bulk earth growth curve show a range between 0 to +4, with the majority of the kimberlites being in the range 0 to +2. This result strengthens our earlier conclusions that kimberlitic liquids are derived from a relatively primeval and unique mantle reservoir with a nearly chondritic Sm/Nd ratio.

C18

THE EVOLUTION OF OLIVINE MELILITITE AND KIM-BERLITE MAGMAS

A.E. MOORE¹, A.J. ERLANK², A.R. DONCAN² ¹ Falconbridge Explorations Limited, Gaborone, Botswana. ² Dept. of Geochemistry, University of Cap Town, S. Africa.

Clivine melilitites and oivine neghelinites occur in two pipe clusters in the hemaqualand-Sushmanland area of western South Africa. Disparate ages and differences in initial Sr-isotope ratios indicate that it is not possible to relate these rocks to a common parental magma. Nevertheless, it is possible to model the differences in bulk rock chemistry between the pipes in terms of processes common to magmas generated in the same tectonic environnement, although it is recognised that the rocks themselves cannot be comagmatic.

Chemical characteristics of the southern (Garies) pipes lower MgO and higher concentrations of some incompatible elements indicates that they are compositionally more "evolved" than those in the Gamoep pipe cluster to the north. Compositional variation withinthe southern pipe cluster has been dominated by fractional crystallisation of olivine, melilite, perovskite and titanomagnetite (the low pressure phase assemblage in these rocks).

Compositional variation within the northen pipe cluster reflects the imprint of polybaric fractional crystallisation which has involved both a high pressure (negacryst) prase assemblage of olivine, clinopyroxene and ilmonite and the same low-pressure prases that dominantly control the compositional veriation in the southern pipes.

Substraction of the high-pressure phases from an average Campeb (northern magma composition will produce a composition similar in " compatible" major element contents to that of an average Garies (shuthern) magma. This suggests that the Garies pipes could have been derivee by high-pressure crystal fractionation of a more primitive magma which was similar in major element chemistry to an average Gamer, composition. Nowver, the enrichment of incompatible trace elements such as Zr and Nb in the Garies rocks relative to those in the Gamep pipes is far higher than would be predicted by a simple crystal fractionation model. This suggests that the primary magmas for tre that there were compositional differences between their respective source areas.

Although it is possible to model the compositional derivation of the Garies rocks from a Gameer-type magna it would appear that the oarental magma for the Ganeer pipes was itself relatively evolved, since olivine phenorysts in the Gameer pocks are always more Fer-rich than would be expected in an unmodified mantle-derived liquid. A consideration of the compositional data suggests that an average Gameer type magna could be derived from a "primary" magna verage Gameer type magna could be derived from a "primary" magna verage Gameer type magna schedular the y crystal fractionation of the kimberlite megacryst assenblage comprising Divine, altowine exilities of haraqual hand-Busmanland Super South African imberlites also supportive of a genetic relationship between South African imberlites and the olivine mellities of haraqual hand-Busmanland since both have clearly been derived from isotopically "begleted" mantle source areas.

Alvaline volcanic opers of post-fondwanal and age show a systematic variation in composition with their geographic position on the southern African subcontinent. Diamoniferous kimberliets, which aponear to be the least evolved chemically, are confined to the central, ancient, cratonic areas. More evolved alkaline rocks (olivine mellinities and olivine nephelinites) are concentrated closer to the continental margin in the east and west of South Africa, while the most evolved alkaline rocks (the trachybasalis of the Alphard banks) occur on the southern continental shelf. It is postulated that this chemical zonation may be related to a steenening of the geotherm from the centre of the succontinent towards its edges.

C19

THE GEOCHEMISTRY OF SOME KIMBERLITES FROM THE TYPE AREA IN KIMBERLEY SOUTH AFRICA, IN RELATION TO MODELS OF KIMBER-LITE PETROGENESIS

GW BERG

University of Port Elizabeth Dept of Geology P.O. Box 1600. Port Elizabeth 6000 South Africa

When compared to the available information about more widespread and thoroughly studied rocks such as basalts, corsiderable uncertainty remains about the chemical composition of kimberlite magmas. This is because the frequently violent emplacement of kimberlite fads to contamination during emplacement, and further renders kimberlite susceptible to post-emplacement alteration by groundwater which can percolate through the relativity permeable tuffs and brecciated kimberlite, for which mary analyses appear in the literature. Quietly intruded magmatic kimberlites which are free of crustal inclusions and impermeable groundwater after emplacement are rare. However, some such specimens are included together with altered rocks in a collection of seventy kimberlites for which full major and some trace element analyses are presented in the present work. (See Berg and Allsopp, 1972 and Barret and Berg, 1975 for brief descriptions and isotope data for some of these rocks).

these rocks). Systematic appraisal of the geochemical data was combined with the petrographic assessment of freshness as described in Barret and Berg (1975). This approach was designed to characterise the geochemistry of kimberlite magma as closely as possible and to identify rocks in which the magma as closely as possible and to identify rocks in which that their analyses no longer represent the original kimberlite magma's composition sufficiently closely to be satisfactory for testing models for kimberlite formation. Alteration and contamination lead to increases, for example, in the concentrations of Na₂O and Al₂O. There are no significant differences in the concentrations of SiO, than fresh kimberlites have significantly higher concentrations of SiO, there is significant differences in the concentrations of SiO, there increases in the concentration of Al₂O, and FiO, fresh kimberlites, have the altered kimberlites, which contain higher doncentrations of SiO. Care must be taken to distinguish between increases in the anounts of primary phlogopite in a sample rather than to contamination and alteration reactions. It was found that comosition such as the averages for Lesotho

rather than to contamination and alteration reactions. It was found that composition such as the averages for Lesotho kimmerlites given by Dawson (1962) and Gurney and Ebrahim (1973), which have been used by other investigators to represent the chemistry of kimberlite magnas, fall in the range of the altered kimerlites suited here. An outcome of the alteration of kimberlite is to increase the amount of orthopyroare in the norm of average compositions, which may lead to inccorect differentiation models and influence the results of high pressure phase equilibrium studies based on the chemistry of average kimberlite. Consequently it is suggested that some current models for the formation of kimberlite and related rocks may require considerable refinement.

Some implications are considered, such as the indicated partition coefficients for Cr and Ni, when the assumption is made that kimberlite is a partial melt of low degree in the mantle, and that the fresh kimberlites here described adequately represent the composition of such kimberlite magma at its source.

Berg, G.N. and H.L. Allsopp (1972) Earth Planet.Sci Letters 16, 27-30. Barrett, D.R. and G.W. Berg (1975) Phys. Chem. Earth 9;619-635. Dawson, J.B. (1962) Buill Geol. Soc. Am. 73, 545-60. Gurney, J.J.; and Ebrahim, S. In :Nixon, FTM, (ed.) Lesotho Kimberlites Lesotho Natl. Dev. Co., Maseru 280-284.