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Although studies of kimberlites and their mantle-derived inclusions still convey 
contradictory geotectonic messages (the models of diamond genesis by Haggerty (1986) 
and Schulze (1986) are two recent examples), geotectonic information derived from such 
studies should ultimately fit into compatible upper mantle models that can be 
integrated with those from other Earth science disciplines. Tectonic aspects of 
kimberlites and related rocks involve their local and regional structural settings, 
their larger-scale geotectonic controls, the physical processes controlling kimberlite 
formation in the upper mantle, and the ascent through the lithospere. Inclusion 
studies (involving xenoliths, megacrysts, and diamonds thought to have equilibrated 
under upper mantle conditions) yield information about the composition, physical 
conditions of formation, textures, and structures of small isolated samples that are 
combined to obtain a picture of the composition, physical conditions, structure, and 
origin of the lithospheric column traversed by the kimberlite. Viewed in this 
context, geotectonic bits of information from kimberlite and inclusion studies can be 
divided into those contributing to the understanding of processes of upper mantle 
formation and those monitoring later modifications of the mantle. As the mantle 
evolves continuously, such categories naturally are end members of a continuous 
spectrum of processes. However, the division makes sense for diamondiferous 
kimberlite provinces on Precambrian shields, where the subcontinental lithosphere, 
from which most of the mantle sample was derived, was assembled in Early Precambrian 
times, whereas the kimberlite eruptions and other intraplate magmatism were triggered 
by distinctly later events. 

For the southern African craton, where Archean isotopic signatures have survived 
in xenoliths as well as in diamond inclusions (e.g. Kramers, 1979; Richardson et al., 
1984; Richardson et al., 1985), the origin of the lithospheric section traversed by 
the kimberlites becomes a problem of Archean tectonics. If integrated with current 
models based largely on rocks from Archean granite-greenstone and granulite-gneiss 
terrains, xenolith studies will lead to a much improved understanding of Archean 
tectonic processes. 

Opinion amongst students of Archean rocks has long been divided as to whether the 
evolution of the Archean lithosphere can be explained in terms of plate tectonic 
processes (e.g. Kroner, 1981). Two of the major arguments against Archean plate 
interactions have been the apparent absence from the Archean rock record of ophiolites 
and eclogites (e.g. McCall, 1981), the presence of which in Phanerozoic erogenic belts 
i.=' commonly accepted as evidence for sea-floor spreading and subuction, respectively. 
Many workers, however, have accepted that the mafic volcanic sequences of greenstone 
belts orginate in proto-oceanic (e.g. Windley, 1976) or marginal basin settings (e.g. 
Tarney et al., 1976), and evidence for the occurrence of complete or partial ophiolite 
assemblages in Archean greenstone belts from South Africa, Wyoming, and northwestern 
Canada was presented by de Wit and Stern (1980), Harper (1986), and Helmstaedt et al. 
(1986). Whereas this supports Archean sea-floor spreading, arguments for Archean 
subduction have been of a more theoretical nature (e.g. Nisbet and Fowler, 1983)• as 
surface occurrences of eclogites of undisputed Archean age have not been reported. 
Workers on mantle nodules from kimberlites, however, have found that the origin of a 
number of xenolith and xenocryst types can be explained by subduction of oceanic 
lithosphere. These include certain eclogites and grospydites which may have been 
derived from subducted metabasites and rodingites (e.g. Helmstaedt and Carmichael, 
1978; Walker, 1979; Ater et al., 1984; MacGregor, 1985), alkremites, derived from Al- 
rich sediments (Exley et al., 1983) or black wall-chlorite alteration around 
metaserpentinites (this paper), grossular inclusions in diamonds (Sobolev et al., 
1984), peraluminous garnet-kyanite rocks, derived from politic sediments (Helmstaedt 
and Hall, 1985), diamondiferous low-Ca garnet harzburgites and dunites, derived from 
graphite-bearing metaserpentinites (Schulze, 1986), and green garnets related to 
wehrlites, derived from uvarovite-bearing serpentinites (Schulze, this volume). Such 
nodules, if indeed of Archean age, represent part of the complimentary mantle sample 
of rocks exposed in Archean shields and constitute direct evidence for subduction in 
the Archean rock record. 
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Although it is still a matter of debate whether the higher heat loss from the 
Archean Earth required "faster spreading" or "more ridge" (Hargraves, 1986), it is 
likely that the Archean was characterized by relatively fast spreading rates and 
subduction of relatively young oceanic lithosphere (e.g. Abbott and Hoffman, 198^1; 
Abbott, 1984). As such conditions would favour relatively shallow or low-angle 
subduction, we propose that the Archean lithosphere beneath the southern African 
craton was formed by lateral underplating of subducted oceanic lithosphere. In a 
regional plate tectonic synthesis. Light (1982) showed that the Zimbabwean and 
Kaapvaal cratons may have been separated by more than 1000 km of oceanic crust and 
that this crust was subducted beneath the Kaapvaal craton. To explain the presence 
of Archean subducted rocks among the mantle sample from kimberlites of the Kaapvaal 
craton, we envisage that this and earlier subduction zones were shallow-dipping and 
that the entire craton was repeatedly underplated by oceanic lithosphere. 

The post-Archean evolution of the continental lithosphere involves a change from a 
regime of rapid spreading and predominantly shallow, low-angle subduction to more 
normal plate tectonics. Low-angle subduction, the dominant process during the 
formation of the Archean lithosphere, became an exception, restricted to episodes of 
rapid plate convergence and/or subduction of low-density crust. As it can be shown 
that such episodes have preceeded some of the major kimberlite events within and on 
the margins of stable cratons (Helmstaedt and Gurney, 1982), low-angle subduction is 
held responsible for the intraplate processes that modified the upper mantle, 
controlled kimberlite distribution, and eventually triggered the kimberlite eruptions. 
The post-Archean metasomatic overprint recognized in many upper mantle nodules and the 
formation of the megacryst suite may be related to these episodes. 
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