K, RB AND BA IN MICAS FROM KIMBERLITE AND PERIDOTITIC XENOLITHS.

- J. V. Smith and R. L. Hervig, Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois 60637 U.S.A.
- D. Ackermand, Mineralogisch-Petrographisches Institut der Universitat Kiel, W. Germany

J. B. Dawson, Department of Geology, University of St. Andrews, Scotland

Highly-sensitive electron microprobe analyses were made for Rb and Ba in micas from peridotitic xenoliths in kimberlites, in MARID-suite nodules, in phlogopite megacrysts, and in kimberlite groundmass minerals (Table 1). Special attention was paid to background for Rb L_{α} (Fig. 1); the standard was Corning X-glass (0.49 wt.% Rb₂0, atomic absorption analysis, J. Ito). Fig. 2 summarizes the ranges and mean for K/Rb and K/Ba.

Primary micas from peridotite xenoliths were split into two groups. High-K ones have lower Na, lower BaO (340-880) and higher Rb_20 (320-440) than low-K ones (BaO 1720-4000, Rb_20 160-260). Phlogopites from the MARID-suite (interpreted as cumulates from kimberlite liquid crystallizing at considerable depth; Dawson and Smith, 1977) have higher Rb_20 than both types of peridotite micas, and the same range of BaO as high-K peridotite micas. Aoki (1974) recorded Rb_20 analyses for MARID micas twice greater than ours, whereas Allsopp and Barrett (1975) recorded ~400-530 for Wesselton "nodule" micas which fall in our range of 340-800 for MARID micas. The very wide ranges for megacryst micas (interpreted as phenocrysts; Smith and Dawson, 1975) overlap those for MARID micas, and our range of Rb_20 encompasses that for Monastery megacrysts (Rb_20 683-963; Allsopp and Barrett, 1975).

The groundmass of micaceous kimberlites contains very rare, Fe-rich micas (Type I) interpreted as xenocrysts from an intrusive precursor (carbonatitic?), and abundant Type II micas interpreted as late-stage primary crystals (Smith, Brennesholtz and Dawson, see another Ext. Abstr.). Both have very wide, overlapping ranges of Rb₂O and BaO. BaO concentrations tend to be considerably greater than those for the high-K peridotite, MARID and megacryst groups, but similar to those for the low-K peridotite group. Bulk analyses of kimberlite groundmass micas should be determined essentially by Type II micas, and the K/Rb range for Wesselton groundmass mica (Barrett, 1975) is at the low end (110-160) of the range (112-1040) found by us for micaceous kimberlites from several localities. Perhaps some of these micas are partly serpentinized.

Serpentine carries substantial Rb_20 (Table 1) and somewhat less K_20 . A kimberlite with equal amounts of serpentine (K_20 400, Rb_20 580) and Type II mica (K_20 10 wt.% Rb_20 400) would have K/Rb 93. No other minerals carry substantial K and Rb. Some measured K/Rb values for bulk kimberlite are: Fesq <u>et al</u>. (1975a), 88-217; Barrett and Berg (1975), 93-207; Harris and Middlemost (1969), mean kimberlite 196. Until detailed mineralogical modes are obtained for samples used for bulk analysis, a definitive test cannot be made, but serpentine is apparently an important sink for Rb in kimberlite.

Unfortunately the presence of barite in many micaceous kimberlites rules out simple interpretation of K/Ba ratios of bulk kimberlite in terms of constituent minerals.

Mica and clinopyroxene (see refs. in Ext. Abstr. by Bishop <u>et al</u>.) are probably the significant hosts for K and Rb at depths below ~100km, and it is interesting to check whether total extraction of these minerals into magmas would yield K/Rb ratios which match those for mantle-derived volcanic rocks. Unfortunately the lack of understanding of the different origins of high-K and low K peridotite micas provides a complication, as does possible mica-liquid fractionation (Beswick, 1976).

Values of K/Rb for bulk kimberlites (~90-220) are lower than our values for high-K peridotitic mica (210-300) and low-K peridotitic mica (330-550), but greater than the values for inclusion-bearing diamonds (20-130, mean ~70; Fesq <u>et al.</u>, 1975b). Similarly, the values of K/Ba for kimberlites (8-39; Fesq <u>et al.</u>, 1975) lie between those for high- and low-K peridotitic micas (112-292 and 22-51) and for diamonds (1.5-2.5; Fesq <u>et al.</u>, 1975b). Clinopyroxenes tend to have high values of K/Rb (often over 1,000; Shimizu, 1975). We have not yet evaluated the ranges for secondary micas in peridotites, but aim to obtain data in time for the conference. Rhodes and Dawson (1975) reported K/Rb 83-234 for peridotites from Lashaine, and these relatively low values may result mainly from secondary mica.

The K/Rb ratio of Cl meteorites, probably the best representative of the primordial solar nebula, is $(544+75)/1.88+0.36 = 289 \simeq 100$ (Nichiporuk and Moore, 1974; Krahenbühl et al., 1973) which lies inside our range for peridotitic micas.

K/Ba values for Basutoland flood basalts (12-46, mean 25) and dolerites (mean 36) (Cox and Hornung, 1966) overlap with the range for low-K peridotite micas but not with high-K peridotite micas, while the K/Rb values (basalts, 110-680, mean 213; dolerites, mean 435) overlap the entire range for both lowand high-K peridotite micas, but are far outside the ranges for diamond inclusions. Lloyd and Bailey (1975) reported the following average values for 17 Eifel (Germany) lavas (K/Rb 289; K/Ba 22.5) and 23 Uganda lavas (323;22.9).

Oceanic basalts have higher K/Rb (e.g. 330-1780; O'Nions <u>et al.</u>, 1976) and a wide range of K/Ba (e.g. 31-412; Kay <u>et al.</u>, 1970). These values overlap considerably with those for peridotitic micas, but tend to be higher. Clinopyroxenes (Shimizu, 1975) from inclusions in kimberlite have higher variable K/Rb (160-22,300) and K/Ba (4-1140), perhaps because of contamination. Further work is needed to test whether clinopyroxene-mica-peridotite could yield oceanic basalts by partial melting, and whether other minerals must be considered to explain K,Rb and Ba.

NSF EAR 76-03604 and Materials Research Laboratory.

References, Allsopp H. L. Barrett D. R. 1975 PCE <u>9</u> 605; Aoki K. 1974 CMP <u>48</u> 1; Barrett D. R. Berg G. W. 1975 PCE <u>9</u> 619; Beswick A. E. 1976 GCA <u>40</u> 1167; Cox K. G. Hornung G. 1966 AM <u>51</u> 1414; Dawson J. B. Smith J. V. 1977 GCA <u>41</u> 309; Fesq H. W. Kable E. J. D. Gurney J. J. 1975a PCE <u>9</u> 687; Fesq H. W. <u>et al.1975b PCE <u>9</u> 817; Harris P. G. Middlemost E. A. 1969 L <u>3</u> 77; Kay R. Hubbard N. J. Gast P. W. 1970 JGR <u>75</u> 1585; Krahenbühl U. <u>et al. 1973 GCA <u>37</u> 1353; Lloyd F. E. Bailey D. K. 1966 PCE <u>9</u> 389; Nichiporuk W. Moore C. B. 1974 GCA <u>38</u> 1691; O'Nions, R. K. Pankhurst R. J. Grönvold, K. 1976 JP <u>17</u> 315; Rhodes J. M. Dawson J. B. 1975 PCE <u>9</u> 545; Shimizu N. 1975 PCE <u>9</u> 655; Smith J. V. Dawson J. B. 1975 GSA Abstr. Progr. <u>7</u> 1275.</u></u>

Table 1. Dieccion	microprobe analyses				
Туре	N	BaO ppm	Rb ₂ 0 ppm	K/Rb	K/Ba
Peridotite, high K	4	340-880 (635)	320-440(380)	212-301(254)	112-292(173)
Peridotite, low K	3	1720-4000(3080)	160-260(220)	332 - 550(420)	22-51(33)
MARID	7	340-800(390)a	470-700(580)	145-203(167)	124-286 ^a (260)
Megacryst	19	130-2070(380) ^b	290-1060(750)	91-319(138)	102-726(398)
Type I groundmass	5	1030-4320(2670)	240-600(470)	137-348(209)	20-88(42)
Type II groundmass	9	470-5780(2450)	90-820(400)	112-1040(351)	16-199(80)
serpentine ^C	-	<50ppm	530-620(580)	0.25-1.00(0.63)) –
amphiboled	-	<50ppm	780	60	-
					1

migroprobe analys

N number of samples. ^aAll but one sample have BaO 340-380; K/Ba 248-288. ^b18 samples have BaO 130-970(380) but one megacryst from Peiser mine is very variable (190-2070) and was omitted from the arithmetic mean. ^colivine pseudomorph, serpentinized mica, accordion types, respectively in 1097A have Rb₂0,K₂0: 620,170; 530,360; 600,660. ^d1160(MARID).

Fig. 2. Ranges and mean of K/Rb and K/Ba for mica (upright triangle) and other minerals (inverted triangle).