
11th International Kimberlite Conference Extended Abstract No. 11IKC-4535, 2017 

 
 

Discovery of an orangeite magmatic event in the central Kalahari: 
Implications for the origin of southern African kimberlites 

 
Marylou Vinès1, Sebastian Tappe1,*, Andreas Stracke2, Allan Wilson3, Andrew Rogers4 

 

1University of Johannesburg, South Africa, *sebastiant@uj.ac.za 
2Westfälische Wilhelms-Universität Műnster, Germany, stracke.andreas@uni-muenster.de 

3University of the Witwatersrand, South Africa, allan.wilson@wits.ac.za 
4Petra Diamonds South Africa (Pty) Ltd, andrew.rogers@petradiamonds.com 

 
Introduction 
 
Southern Africa hosts more than 1,600 kimberlite bodies, and over 75% of these fall within a 250 to 
50 Ma age range. These Mesozoic-Cenozoic kimberlites have Group-1 and Group-2 compositional 
affinities, with occurrences of both groups providing significant primary diamond deposits. While 
Group-1 kimberlites represent a relatively homogenous type of CO2- and H2O-rich ultramafic magma 
in cratonic regions worldwide (Kjarsgaard et al., 2009), Group-2 kimberlites are compositionally 
more diverse potassic rocks that are confined to the Kaapvaal craton with emplacement ages between 
200-110 Ma (Mitchell, 1995). Most models proposed for the origin of Group-1 kimberlites suggest 
sublithospheric depleted upper mantle sources (Tappe et al., 2017), whereas the compositions of 
Group-2 kimberlites require long-term enriched sources (Smith et al., 1985; Becker and Le Roex, 
2006), with cratonic mantle lithosphere providing a suitable substrate to generate these H2O-rich 
potassic magmas. The complexity of Group-2 kimberlites is consistent with the heterogeneous nature 
of the Kaapvaal craton root (Giuliani et al., 2015), and some authors emphasized strong petrogenetic 
links to olivine lamproites and ultramafic lamprophyres from cratons worldwide (Tappe et al., 2008). 
Group-2 kimberlites may therefore be interpreted as the magmatic expression of metasomatized 
mantle lithosphere beneath the Kaapvaal craton. Within such a model each craton produces its own 
compositional ‘flavour’ of ultramafic potassic magmatism due to the differences in composition, 
style, and timing of lithospheric mantle enrichment. The re-introduction of the term ‘orangeite’ for 
Group-2 kimberlite (Mitchell, 1995) reinforced the fact that these often diamond-bearing rocks differ 
significantly from archetypal kimberlites and, thus, they should be treated separately within models 
that seek to explain volatile-rich mantle-derived magmatism on thick continental shields. 
 
KX36 Pipe - a newly discovered kimberlite occurrence in the central Kalahari of Botswana 
 
The KX36 kimberlite pipe was discovered in 2008 during geophysical surveying of the central 
Kalahari in Botswana (Rogers et al., 2013). The pipe represents a ~5 ha large magmatic body that is 
covered by 80 m of Kalahari Group sedimentary overburden. The KX36 kimberlite pipe cuts through 
400 m of Karoo Supergroup basaltic lava, and the kimberlite magma has locally entrained up to 10-20 
vol% of basalt wall-rock, as well as some minor granitoid basement. On the basis of stratigraphy, the 
KX36 kimberlite pipe was emplaced between 180 and 50 Ma. The nearest known kimberlite 
occurrences are the Gope cluster some 60 km to the NW and the highly economic Orapa field some 
250 km to the NNE of KX36, with kimberlite pipe emplacement ages between 115 and 80 Ma 
(Griffin et al., 2014). However, our first U/Pb perovskite age results for two magmatic kimberlite 
units within the KX36 pipe indicate magma emplacement at the NW margin of the Kaapvaal craton 
between 160 and 140 Ma. The robustness of these preliminary results is currently tested by additional 
analyses, also including an alternative analytical method. 
 
Petrography and mineralogy 
 
Two main units, ‘black’ and ‘green’ kimberlite, can be distinguished within the KX36 pipe down to 
~500 m depth. Both units represent coherent magmatic kimberlite, and the green variety appears to be 
a hydrothermally altered and more crustally contaminated variant of the fresh black kimberlite. The 
black kimberlite is highly macrocrystic with individual olivine crystals approaching 15 mm across (up 
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to 30 vol%). Phlogopite macrocrysts up to 3 mm across are common (up to 5 vol%). Their rims 
typically enclose minute groundmass spinel crystals. The groundmass of the black kimberlite variety 
consists of variable proportions of phlogopite flakes (20-120 µm), carbonate and serpentine. 
Accessory groundmass phases comprise atoll-textured spinel and perovskite (<60 µm), and very rare 
Mg-rich ilmenite. 
A sizable (20 cm across) micaceous autolith was recovered from KX36 kimberlite drill core. The 
fresh autolith is inequigranular and dominated by olivine, phlogopite and clinopyroxene, with minor 
spinel, Mn-rich ilmenite, calcite, serpentine, apatite and Ti-rich andradite garnet. Macrocrystic olivine 
has high forsterite content of Fo92. Phlogopite has high TiO2 content (1-4 wt%) and evolves by Al-
depletion toward tetraferriphlogopite. Clinopyroxene is close to diopside end-member composition 
with minor amounts of Ti and Al. Spinel crystals occur in interstices and as inclusions in phlogopite 
and clinopyroxene. They have magnesian chromite composition with high Cr# of up to 93 and low 
TiO2 content (<6 wt%). Interstitial magmatic garnet has Ti-andradite composition with up to 1 wt% 
ZrO2. These mineralogical features suggest that the parent magma was of orangeite affinity. 
 
Bulk rock major- and trace element compositions 
 
Although the fresh black kimberlite variety of the KX36 pipe macroscopically resembles archetypal 
kimberlite, several mineralogical and geochemical features suggest a petrogenetic affinity to Group-2 
kimberlite. For example, the transitional nature of the KX36 kimberlite between archetypal kimberlite 
and orangeite is illustrated by the elevated K contents at constant and low Ti concentration levels. 
This trend culminates at the micaceous autolith (Fig.1). Primitive mantle normalized incompatible 
element patterns show a significant slope for the LILE (Cs, Rb, Ba), unfractionated low 
concentrations for the HFSE (Th, U, Nb, Ta), and highly fractionated LREE/HREE. These patterns 
strongly resemble the trace element distributions of orangeites (Fig.2). The trace element pattern of 
the micaceous autolith is highly fractionated and bears resemblance to primitive continental arc 
volcanic rocks. Such a geochemical signature is typically found in subduction zone settings. 
 
 

 
 
 
 
 
 
 
Figure 1: TiO2 vs. K2O for fresh 
uncontaminated (C.I. <1.25) magmatic KX36 
kimberlite and an entrained micaceous autolith 
(fields for comparison from: Smith et al., 1985; 
Becker and Le Roex, 2006; Coe et al., 2008; 
Tappe et al., 2017). 
 
 
 

 
Preliminary conclusion 
 
Our study provides first evidence for the occurrence of kimberlite magmatism of Group-2 affinity in 
the central Kalahari basin. This discovery increases the geographic extent of ultramafic potassic 
magmatism in southern Africa by more than 300 km toward the NW Kaapvaal craton edge. As 
previously suggested for orangeite magmatism in other parts of the Kaapvaal craton (cf., Coe et al., 
2008), the combination of a high-LILE and low-HFSE geochemical fingerprint at the NW craton 
margin is best explained by involvement of strongly K-metasomatized mantle lithosphere. The 
distinctive trace element signature can be linked to prior subduction-driven collision events during the 
Proterozoic evolution of the Kaapvaal craton and surrounding orogenic belts. 
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Figure 2: Normalized incompatible element patterns for fresh uncontaminated (C.I. <1.25) magmatic KX36 
kimberlite and an entrained micaceous autolith (fields for comparison from: Becker and Le Roex, 2006; 
http://georoc.mpch-mainz.gwdg.de/georoc/). 
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