³ He and ¹⁰Be Isotopes as a Diamond Exploration Tool: Some Thoughts Based on

Literature Data

Gonzaga, G.M.¹, Gaspar, J.C.² and Araújo, D.P.²

MAGEO Mineração Ltda. SQN 203 Bl. A Ap. 602, 70833-010 Brasília, DF, Brazil.
Instituto de Geociências, Universidade de Brasília, 70910-900 Brasília, DF, Brazil. debora@guarany.cpd.unb.br

Cosmogenic ³He can be produced in diamonds during their post-eruptive residence near the surface (Lal, 1987). Cosmogenic ³He production is not expected bellow 5 meters below the surface in alluvium or weathered kimberlite or lamproite pipes (Lal et al., 1989). ¹⁰Be has a half life of 1.5×10^6 years and can be used to date the exposure time to cosmic rays, but a saturation level can be reached limiting the time interval in which ¹⁰Be can be used. Saturation depends on the material, latitude, and altitude and is typically reached in several million years. Unlike ¹⁰Be, ³He however, will continue to accumulate in the diamond (Lal et al., 1987). The geomagnetic field also affects the production rates of both isotopes. Despite all these variables some data in the literature suggest that it could be possible to use ³He and ¹⁰Be to study the exposure history of diamonds (Cerling and Craig 1994).

Several determinations of noble gases isotopes, in particular ³He and ⁴He, are available for diamonds from worldwide occurrences. The data are on alluvial, pipe and undocumented stones. In order to evaluate de ³He content of documented specimens we compare alluvial and pipe diamonds occurring in South Africa (Premier, Finsch), Botswana (Orapa), Zaire, Sierra Leone and Australia (Argyle and Ellendale).

Alluvial and pipe diamonds were analyzed by Ozima et al (1983); Ozima et al (1985); Lal et al (1987); Honda et al (1987); Kurz et al (1987); Lal et al (1989); McConville and Reynolds (1989); McConville et al (1991) and Wiens et al (1994). ³He contents of several diamonds and sample discrimination for alluvial and pipe are presented in Figures 1, 2 and 3. Ozima et al (1983) found high ³He content in inclusion-free diamonds from the Premier Mine (depth not specified) and proposed a primitive signature for the high ³He/⁴He ratio. Lal et al (1987) presented ³He content for two alluvial stones in Zaire and compared to other determinations for Zaire alluvial diamonds from Ozima et al (1985) and Honda et al (1987). The high ³He content observed was attributed to cosmogenic origin. The same cosmogenic component was also suggested to occur in alluvial diamonds from South Africa that present high ³He content when compared to pipe ones (Lal et al, 1989). Diamonds from the Premier Pipe yield low ³He content and contrast with the preliminary analysis from Ozima et al (1983). The authors also analyzed diamonds from the weathered zone of the Argyle pipe and from a nearby alluvium. In contrast, both samples displayed low ³He contents. McConville and Reynolds (1989) examined fragments of two stones from the Sierra Leone alluvial. One stone is inclusion-free (L_4 and L_5) and the other contain inclusions (L_6 , L_7 and L_8). The ³He content is high for both stones but the ⁴He content is much lower for the first group (L_4 and L_5). The higher ⁴He content for the second group was assigned to the decay of U and Th in the inclusions. McConville et al (1991) examined diamond specimens from the weathered zone of the Argyle Pipe, from a 2,9 km distant alluvium (Limestone Creek) and from the Ellendale Pipe (Australia). In contrast to the low ³He and ⁴He values found by Lal et al (1989) for the Argyle pipe and alluvial diamonds, the authors report much higher contents of both isotopes in diamonds from the same places. They believed that the differences are due to an U-free phase analyzed by Lal et al (1989), yielding low ⁴He values. Diamonds from the Ellendale pipe show lower ³He values. Kurz et al (1987) examined diamonds from the Orapa Kimberlite in Botswana through step analysis. The authors found variability within single stones and attributed it to U and Th zonation and/or surface implantation. The samples were recovered from 40 meters deep what did not allow cosmogenic ³He production. The authors drew attention to the fact the the one step analysis usually presented in the literature would hide isotope variability.

The results of Lal *et al* (1987) and Lal *et al* (1989) are plotted separately from those of McConville and Reynolds (1989) and McConville *et al* (1991) in Figures 2 and 3. The most important feature, common to both diagrams, is that the ³He contents of alluvial diamonds are higher than those in pipe diamonds. The absolute values, however, do not show consistency between the two data sets (see Figure 1). The differences in absolute values could be due to different laboratory procedures.

The data presented in Figures 2 and 3, thus, suggest that ³He contents in diamonds seem to be a potential tool to identify and discriminate diamonds with a long, short or no exposition time to cosmic rays, mainly, if combined to the calculated ¹⁰Be exposure times. The results that both isotopes (and perhaps others) can provide are directly related to the time interval that a diamond population has been involved, or not, with sedimentary recycling. Examples of diamond prospecting areas where this exploration tool could be tested include the Casuarina (Australia), Guanyamo (Venezuela), São Francisco Craton (Brazil), etc. The field of cosmogenic isotopes studies for diamond exploration programs seems to be open and promising, if well controlled target areas are chosen and methods and specific criteria are established.

References

- Cerling, T.E., and Craig, H., 1994, Geomorphology and in situ cosmogenic isotopes: Annu Rev, Earth Planet. Sci., v.22, p.273-317.
- Honda, M. and Reynolds, J.H., 1987, Noble gases in diamonds: occurrences of solarlike helium and neon: Jounal of Geophysical Research., v.92, p. 12507-12521.
- Kurz, M.D., Gurney, J.J., Jenkins, W.J., and Lott III, D.E., 1987, Helium isotopic variability within single diamonds from the Orapa kimberlite pipe: Earth Planet. Sci. Letters., v.86, p. 57-68.
- Lal, D., 1987, Production of ³He in terrestrial rocks: Chemical Geology (Isotope Geoscience Section)., v.66, p. 89-98.
- Lal, D., Craig, H., Wacker, J.F., and Poreda, R., 1989, ³He in diamonds: The cosmogenic component: Geochimica et Cosmochimica Acta, v.53, p. 569-574.
- Lal, D., Nishiizumi, K., Klein, J., Middleton, R., and Craig, H., 1987, Cosmogenic ¹⁰Be in Zaire alluvial diamonds: implications for ³He contents of diamonds: Nature, v. 328, p.139-141.
- McConville, P., and Reynolds, J.H., 1989, Cosmogenic helium and volatile-rich fluid in Sierra Leone alluvial diamonds: Geochimica et Cosmochimica Acta, v.53, p.2365-2375.
- McConville, P., Reynolds, J.H., Epstein, S., and Roedder, E., 1991, Implanted ³He, ⁴He, and Xe in further studies of diamonds from Western Australia: Geochimica et Cosmochimica Acta, v.55, p. 1977-1989.
- Ozima, M., Zashu, S., Mattey, D.P., and Pillinger, C.T., 1985, Heliun, argon and carbon isotopic compositions in diamonds and their implications in mantle evolution: Geochemical Journal, v.19, p. 127-134.
- Ozima, M., Zashu, S., and Nitoh, O., 1983, ³He/⁴He ratio, noble gas abundance and K-Ar dating of diamonds an attempt to search for the records of early terrestrial history: Geochimica et Cosmochimica Acta, v. 47, p. 2217-2224.
- Wiens, R.C., Lal, D., Rison, W., and Wacker, J.F., 1994, Heliun isotope diffusion in natural diamonds: Geochimica et Cosmochimica Acta, v. 58, p. 1747-1757.

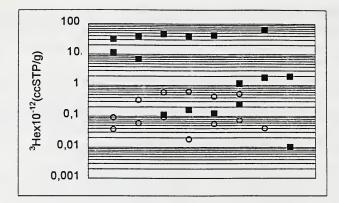


Figure 01 - Alluvial (filled symbols) and pipe (open symbols) diamonds reported by Lal et al, 1987; Lal et al, 1989; McConville and Reynolds, 1989 and McConville et al, 1991.

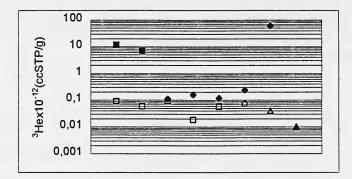


Figure 02 - Open symbols: pipe diamond; filled symbols: alluvium diamonds. Data from Lal *et al* (1987) and Lal *et al* (1989). Filled square - Zaire alluvium, samples EBM and Zaire-1 (Lal *et al*, 1987); filled losangle - Namibian alluvium, samples CDM-1 to CDM-5; filled triangle - Argyle near alluvium, sample ARG-AI-1; open square - Finsch, Premier and De Beers Pool Mine South African pipes, samples FNS-1, FNS-2, PR-1, PR-2 and D.P.; open circle - Panna Pipe, India, sample P1; open triangle - Argyle Pipe, Australia, sample ARG-P-11 (Lal *et al*, 1989).

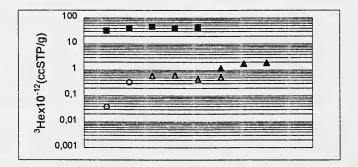


Figure 03 - Open symbols: pipe alluvium; filled symbols: alluvium diamonds. Data from McConville *et al* (1989) and McConville and Reynolds (1991). Filled square - Sierra Leone Alluvium, samples $L_{4.5}$, $L_{6.8}$ (MacConville and Reynolds, 1989); Filled Triangle - Argyle near Alluvium, Australia, samples LC-WZ, LC-Wg and LC-BZ. Open circle - Ellendale Pipe, Australia, samples ELL-WZ and ELL-YZ; Open triangle - Argyle Pipe, Australia, samples ARG-WZ, ARG-WG, ARG-BG#1 and ARG-BG#2 (McConville *et al*, 1991).